Developing sustainable and clean electrochemical energy conversion technologies is a crucial step in addressing the challenges of energy shortage and environmental pollution. Exploring and developing new electrocataly...Developing sustainable and clean electrochemical energy conversion technologies is a crucial step in addressing the challenges of energy shortage and environmental pollution. Exploring and developing new electrocatalysts with excellent performance and low cost will facilitate the commercial use of these energy conversion technologies. Recently, dual-atom catalysts(DACs) have attracted considerable research interest since they exhibit higher metal atom loading and more flexible active sites compared to single-atom catalysts(SACs). In this paper, the latest preparation methods and characterization techniques of DACs are systematically reviewed. The advantages of homonuclear and heteronuclear DACs and the catalytic mechanism and identification technologies between the two DACs are highlighted. The current applications of DACs in the field of electrocatalysis are summarized. The development opportunities and challenges of DACs in the future are prospected. The ultimate goal is to provide new ideas for the preparation of new catalysts with excellent properties by customizing diatomic catalysts for electrochemical applications.展开更多
A new light nuclear reaction model has been developed and the double-differential measurements of lp shell nuclei have been analyzed successfully. Now, the application of this model is expanded to 19F of the 2s-ld she...A new light nuclear reaction model has been developed and the double-differential measurements of lp shell nuclei have been analyzed successfully. Now, the application of this model is expanded to 19F of the 2s-ld shell nucleus. The double-differential cross section of total outgoing neutron for n +^19F reactions at En=14.2 MeV has been calculated and analyzed, which agrees fairly well with the experimental measurements. In this paper, the contributions from different reaction channels to the double-differential cross sections have been analyzed in detail. The calculations indicate that this light nudear reaction model is also able to be used for the 2s-ld shell nucleus so long as the related level scheme couM be provided sufficiently.展开更多
The microscopic recollision dynamics in strong-field nonsequential double ionization of Ar atoms is in- vestigated using three-dimensional classical ensembles. By adjusting the nuclear Coulomb potential, we can excell...The microscopic recollision dynamics in strong-field nonsequential double ionization of Ar atoms is in- vestigated using three-dimensional classical ensembles. By adjusting the nuclear Coulomb potential, we can excellently reproduce the experimental results both within the laser intensity regimes well above the reeollision threshold and well below the recollision threshold quantitatively. More importantly, our trajectory analysis clearly reveals the particular electronic dynamics in recollision process: the momentum of the recolliding electron encounters a sudden change both in magnitude and in direction when it approaches the nucleus closely, which show that the nuclear Coulomb attraction plays a key role in the recollision process of nonsequential double ionization of Ar atoms.展开更多
The probability of 5He particle emission has been affirmed theoretically [J.S. Zhang, Science in China G47 (2004) 137]. In order to describe the 5He emission, the theoretical formula of the double-differential cross s...The probability of 5He particle emission has been affirmed theoretically [J.S. Zhang, Science in China G47 (2004) 137]. In order to describe the 5He emission, the theoretical formula of the double-differential cross section of emitted 5He is to be established. Based on the pick-up mechanism, used for calculating the formula of d, t, 3He, α emissions, the theoretical formula of double-differential cross section of 5 He is obtained, which is expressed in the form of Legendre coefficients. In the case of low incident energies, the configuration [J.S. Zhang, Science in China G47 (2004)137; J.S. Zhang, Commun. Theor. Phys. (Beijing, China) 39 (2003) 83] is the dominant part in the reaction processes.The calculated result indicates that the forward peaked angular distribution of the composite particle emission is weaker than that of the emitted single nucleon due to pick-up nucleon from the Fermi sea. As an example, the reactions of n + 14N have been calculated, and the Legendre coefficients of d, t, 3He, α, 5He emissions are obtained respectively.The results show that the forward tendency is decided by the average momentum per nucleon in the emitted composite particles. The larger the average momentum is, the stronger the forward tendency is.展开更多
Using Smoluchowski equation,we study the shell effects on the emission of light particles in the fission process of a doubly magic nucleus ~(208)Pb.Calculated results show that shell has a considerable effect on the n...Using Smoluchowski equation,we study the shell effects on the emission of light particles in the fission process of a doubly magic nucleus ~(208)Pb.Calculated results show that shell has a considerable effect on the neutron emission and that shell effect gradually becomes weak with increasing excitation energy.In addition,a dependence of shell effects in the neutron emission on the angular momentum has been found.展开更多
Photocatalytic reduction of CO2 to CO is a promising approach for storing solar energy in chemicals and mitigating the greenhouse effect of CO2.Our recent studies revealed that[(μ-bdt)Fe2(CO)6](1,bdt=benzene-1,2-dith...Photocatalytic reduction of CO2 to CO is a promising approach for storing solar energy in chemicals and mitigating the greenhouse effect of CO2.Our recent studies revealed that[(μ-bdt)Fe2(CO)6](1,bdt=benzene-1,2-dithiolato),a[FeFe]-hydrogenase model with a rigid and conjugate S-to-S bridge,was catalytically active for the selective photochemical reduction of CO2 to CO,while its analogous complex[(μ-edt)Fe2(CO)6](2,edt=ethane-1,2-dithiolato)was inactive.In this study,it was found that the turnover number of 1 for CO evolution reached 710 for the 1/[Ru(bpy)3]2+/BIH(BIH=1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]-imidazole)system under optimal conditions over 4.5 h of visible-light irradiation,with a turnover frequency of 7.12 min−1 in the first hour,a high selectivity of 97%for CO,and an internal quantum yield of 2.8%.Interestingly,the catalytic selectivity of 1 can be adjusted and even completely switched in a facile manner between the photochemical reductions of CO2 to CO and of protons to H2 simply by adding different amounts of triethanolamine to the catalytic system.The electron transfer in the photocatalytic system was studied by steady-state fluorescence and transient absorption spectroscopy,and a plausible mechanism for the photocatalytic reaction was proposed.展开更多
We determine the structure parameters for the asymmetric heteronuclear diatomic molecule HeH2+ at several internuclear distances with the molecular wavefunctions obtained by solving the time-independent Schr6dinger e...We determine the structure parameters for the asymmetric heteronuclear diatomic molecule HeH2+ at several internuclear distances with the molecular wavefunctions obtained by solving the time-independent Schr6dinger equation with B-spline basis. Then the angular dependence of strong-field ionization rates of HeH2+ are investigated with the molecular tunneling ionization theory. We show that the shape of several lowly excited states (i.e. 2pσ, 2pπ, 3dσ) for HeH2+ are reflected in the orientation dependent ionization rates very well, however, the angle-dependent ionization rate fails to follow the angular distribution of the asymptotic electron density for the ground state lsσ. We also show that the internuclear distance dependent ionization probabilities are in a good agreement with the more accurate result obtained from the numerical solution of the time-dependent Schr6dinger equation.展开更多
Binuclear iron phthalocyanine/reduced graphene oxide(bi-Fe Pc/RGO) nanocomposite with good electrocatalytic activity for ORR in alkaline medium was prepared in one step. High angle annular dark field image scanning tr...Binuclear iron phthalocyanine/reduced graphene oxide(bi-Fe Pc/RGO) nanocomposite with good electrocatalytic activity for ORR in alkaline medium was prepared in one step. High angle annular dark field image scanning transmission electron microscopy(HAADF-STEM) and energy dispersive X-ray spectroscopy element mapping results show bi-Fe Pc was uniformly distributed on RGO. An obvious cathodic peak located at about-0.23 V(vs. SCE) in CV and an onset potential of-0.004 V(vs. SCE) in LSV indicate the as-prepared bi-Fe Pc/RGO nanocomposite possesses high activity which is closed to Pt/C for ORR. The ORR on bi-Fe Pc/RGO nanocomposite follows four-electron transfer pathway in alkaline medium. Compared with Pt/C, there is only a slight decrease(about 0.02 V vs. SCE) for bi-Fe Pc/RGO nanocomposite when the methanol exists. The excellent activity and methanol tolerance in alkaline solutions proves that bi-Fe Pc/RGO nanocomposite could be considered as a promising cathode catalyst for alkaline fuel cells.展开更多
文摘Developing sustainable and clean electrochemical energy conversion technologies is a crucial step in addressing the challenges of energy shortage and environmental pollution. Exploring and developing new electrocatalysts with excellent performance and low cost will facilitate the commercial use of these energy conversion technologies. Recently, dual-atom catalysts(DACs) have attracted considerable research interest since they exhibit higher metal atom loading and more flexible active sites compared to single-atom catalysts(SACs). In this paper, the latest preparation methods and characterization techniques of DACs are systematically reviewed. The advantages of homonuclear and heteronuclear DACs and the catalytic mechanism and identification technologies between the two DACs are highlighted. The current applications of DACs in the field of electrocatalysis are summarized. The development opportunities and challenges of DACs in the future are prospected. The ultimate goal is to provide new ideas for the preparation of new catalysts with excellent properties by customizing diatomic catalysts for electrochemical applications.
基金The project supported by National Natural Science Foundation of China under Grant No. 10547005
文摘A new light nuclear reaction model has been developed and the double-differential measurements of lp shell nuclei have been analyzed successfully. Now, the application of this model is expanded to 19F of the 2s-ld shell nucleus. The double-differential cross section of total outgoing neutron for n +^19F reactions at En=14.2 MeV has been calculated and analyzed, which agrees fairly well with the experimental measurements. In this paper, the contributions from different reaction channels to the double-differential cross sections have been analyzed in detail. The calculations indicate that this light nudear reaction model is also able to be used for the 2s-ld shell nucleus so long as the related level scheme couM be provided sufficiently.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 11005088 and 11047145the Science & Technology Project of Henan Province in China under Grant Nos. 102300410241 and 112300410021the Scientific Research Foundation of Education Department of Henan Province in China under Grant Nos. 2009A140006 and 2011B140018
文摘The microscopic recollision dynamics in strong-field nonsequential double ionization of Ar atoms is in- vestigated using three-dimensional classical ensembles. By adjusting the nuclear Coulomb potential, we can excellently reproduce the experimental results both within the laser intensity regimes well above the reeollision threshold and well below the recollision threshold quantitatively. More importantly, our trajectory analysis clearly reveals the particular electronic dynamics in recollision process: the momentum of the recolliding electron encounters a sudden change both in magnitude and in direction when it approaches the nucleus closely, which show that the nuclear Coulomb attraction plays a key role in the recollision process of nonsequential double ionization of Ar atoms.
文摘The probability of 5He particle emission has been affirmed theoretically [J.S. Zhang, Science in China G47 (2004) 137]. In order to describe the 5He emission, the theoretical formula of the double-differential cross section of emitted 5He is to be established. Based on the pick-up mechanism, used for calculating the formula of d, t, 3He, α emissions, the theoretical formula of double-differential cross section of 5 He is obtained, which is expressed in the form of Legendre coefficients. In the case of low incident energies, the configuration [J.S. Zhang, Science in China G47 (2004)137; J.S. Zhang, Commun. Theor. Phys. (Beijing, China) 39 (2003) 83] is the dominant part in the reaction processes.The calculated result indicates that the forward peaked angular distribution of the composite particle emission is weaker than that of the emitted single nucleon due to pick-up nucleon from the Fermi sea. As an example, the reactions of n + 14N have been calculated, and the Legendre coefficients of d, t, 3He, α, 5He emissions are obtained respectively.The results show that the forward tendency is decided by the average momentum per nucleon in the emitted composite particles. The larger the average momentum is, the stronger the forward tendency is.
基金The project supported in part by the Foundation of Teaching & Researching of the Best Teacher of Southeast University
文摘Using Smoluchowski equation,we study the shell effects on the emission of light particles in the fission process of a doubly magic nucleus ~(208)Pb.Calculated results show that shell has a considerable effect on the neutron emission and that shell effect gradually becomes weak with increasing excitation energy.In addition,a dependence of shell effects in the neutron emission on the angular momentum has been found.
文摘Photocatalytic reduction of CO2 to CO is a promising approach for storing solar energy in chemicals and mitigating the greenhouse effect of CO2.Our recent studies revealed that[(μ-bdt)Fe2(CO)6](1,bdt=benzene-1,2-dithiolato),a[FeFe]-hydrogenase model with a rigid and conjugate S-to-S bridge,was catalytically active for the selective photochemical reduction of CO2 to CO,while its analogous complex[(μ-edt)Fe2(CO)6](2,edt=ethane-1,2-dithiolato)was inactive.In this study,it was found that the turnover number of 1 for CO evolution reached 710 for the 1/[Ru(bpy)3]2+/BIH(BIH=1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]-imidazole)system under optimal conditions over 4.5 h of visible-light irradiation,with a turnover frequency of 7.12 min−1 in the first hour,a high selectivity of 97%for CO,and an internal quantum yield of 2.8%.Interestingly,the catalytic selectivity of 1 can be adjusted and even completely switched in a facile manner between the photochemical reductions of CO2 to CO and of protons to H2 simply by adding different amounts of triethanolamine to the catalytic system.The electron transfer in the photocatalytic system was studied by steady-state fluorescence and transient absorption spectroscopy,and a plausible mechanism for the photocatalytic reaction was proposed.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11164025,11044007,11064013the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant Nos.20096203110001,20116203120001the Foundation of Northwest Normal University under Grant No.NWNU-KJCXGC-03-62
文摘We determine the structure parameters for the asymmetric heteronuclear diatomic molecule HeH2+ at several internuclear distances with the molecular wavefunctions obtained by solving the time-independent Schr6dinger equation with B-spline basis. Then the angular dependence of strong-field ionization rates of HeH2+ are investigated with the molecular tunneling ionization theory. We show that the shape of several lowly excited states (i.e. 2pσ, 2pπ, 3dσ) for HeH2+ are reflected in the orientation dependent ionization rates very well, however, the angle-dependent ionization rate fails to follow the angular distribution of the asymptotic electron density for the ground state lsσ. We also show that the internuclear distance dependent ionization probabilities are in a good agreement with the more accurate result obtained from the numerical solution of the time-dependent Schr6dinger equation.
基金supported by the National Natural Science Foundation of China (21275014, 21375005)the Excellent Young Scientists Fund of NSFC (21322501)+2 种基金the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (CIT& TCD20140309)the Program for New Century Excellent Talents in University (NCET-12-0603)the Beijing Natural Science Foundation Program and Scientific Research Key Program of the Beijing Municipal Commission of Education (KZ201310005001)
文摘Binuclear iron phthalocyanine/reduced graphene oxide(bi-Fe Pc/RGO) nanocomposite with good electrocatalytic activity for ORR in alkaline medium was prepared in one step. High angle annular dark field image scanning transmission electron microscopy(HAADF-STEM) and energy dispersive X-ray spectroscopy element mapping results show bi-Fe Pc was uniformly distributed on RGO. An obvious cathodic peak located at about-0.23 V(vs. SCE) in CV and an onset potential of-0.004 V(vs. SCE) in LSV indicate the as-prepared bi-Fe Pc/RGO nanocomposite possesses high activity which is closed to Pt/C for ORR. The ORR on bi-Fe Pc/RGO nanocomposite follows four-electron transfer pathway in alkaline medium. Compared with Pt/C, there is only a slight decrease(about 0.02 V vs. SCE) for bi-Fe Pc/RGO nanocomposite when the methanol exists. The excellent activity and methanol tolerance in alkaline solutions proves that bi-Fe Pc/RGO nanocomposite could be considered as a promising cathode catalyst for alkaline fuel cells.