This paper presents the control ofa WECS (wind energy conversion system), equipped with a DFIG (doubly fed induction generator), for maximum power generation and power quality improvement simultaneously. The propo...This paper presents the control ofa WECS (wind energy conversion system), equipped with a DFIG (doubly fed induction generator), for maximum power generation and power quality improvement simultaneously. The proposed control algorithm is applied to a DFIG whose stator is directly connected to the grid and the rotor is connected to the grid through a back-to-back AC-DC-AC PWM (pulse width modulation) converter. The RSC (rotor side converter) is controlled in such a way to extract a maximum power, for a wide range of wind speed. The GSC (grid side converter) is controlled in order to filter harmonic currents of a nonlinear load coupled at the PCC (point of common coupling) and ensure smooth DC bus voltage. Simulation results show that the wind turbine can operate at its optimum energy for a wide range of wind speed and power quality improvement is achieved.展开更多
The DC microgrid is connected to the AC utility by parallel bidirectional power converters (BPCs) to import/export large power, whose control directly affects the performance of the grid-connected DC microgrid. Much...The DC microgrid is connected to the AC utility by parallel bidirectional power converters (BPCs) to import/export large power, whose control directly affects the performance of the grid-connected DC microgrid. Much work has focused on the hierarchical control of the DC, AC, and hybrid microgrids, but little has considered the hierarchical control of multiple parallel BPCs that directly connect the DC microgrid to the AC utility. In this paper, we propose a hierarchical control for parallel BPCs of a grid-connected DC mierogrid. To suppress the potential zero-sequence circulating cm-cent in the AC side among the parallel BPCs and realize feedback linearization of the voltage control, a d-q-O control scheme instead of a conventional d-q control scheme is proposed in the inner current loop, and the square of the DC voltage is adopted in the inner voltage loop. DC side droop control is applied to realize DC current sharing among multiple BPCs at the primary control level, and this induces DC bus voltage deviation. The quantified relationship between the current sharing error and DC voltage deviation is derived, indicating that there is a trade-off between the DC voltage deviation and current sharing error. To eliminate the current sharing error and DC voltage deviation simultaneously, slope-adjusting and voltage-shifting approaches are adopted at the secondary control level. The pro- posed tertiary control realizes precise active and reactive power exchange through parallel BPCs for economical operation. The proposed hierarchical control is applied for parallel BPCs of a grid-connected DC microgrid and can operate coordinately with the control for controllable/uncontrollable distributional generation. The effectiveness of the proposed control method is verified by corresponding simulation tests based on Matlab/Simulink, and the performance of the hierarchical control is evaluated for prac- tical applications.展开更多
文摘This paper presents the control ofa WECS (wind energy conversion system), equipped with a DFIG (doubly fed induction generator), for maximum power generation and power quality improvement simultaneously. The proposed control algorithm is applied to a DFIG whose stator is directly connected to the grid and the rotor is connected to the grid through a back-to-back AC-DC-AC PWM (pulse width modulation) converter. The RSC (rotor side converter) is controlled in such a way to extract a maximum power, for a wide range of wind speed. The GSC (grid side converter) is controlled in order to filter harmonic currents of a nonlinear load coupled at the PCC (point of common coupling) and ensure smooth DC bus voltage. Simulation results show that the wind turbine can operate at its optimum energy for a wide range of wind speed and power quality improvement is achieved.
基金Project supported by the National Natural Science Foundation of China (No. 51377142), the National High-Tech R&D Program (863) of China (No. 2014AA052001), the Zhejiang Provincial Natural Science Foundation of China (No. LY16E070002), and the Zhejiang Province Key R&D Project (No. 2017C01039)
文摘The DC microgrid is connected to the AC utility by parallel bidirectional power converters (BPCs) to import/export large power, whose control directly affects the performance of the grid-connected DC microgrid. Much work has focused on the hierarchical control of the DC, AC, and hybrid microgrids, but little has considered the hierarchical control of multiple parallel BPCs that directly connect the DC microgrid to the AC utility. In this paper, we propose a hierarchical control for parallel BPCs of a grid-connected DC mierogrid. To suppress the potential zero-sequence circulating cm-cent in the AC side among the parallel BPCs and realize feedback linearization of the voltage control, a d-q-O control scheme instead of a conventional d-q control scheme is proposed in the inner current loop, and the square of the DC voltage is adopted in the inner voltage loop. DC side droop control is applied to realize DC current sharing among multiple BPCs at the primary control level, and this induces DC bus voltage deviation. The quantified relationship between the current sharing error and DC voltage deviation is derived, indicating that there is a trade-off between the DC voltage deviation and current sharing error. To eliminate the current sharing error and DC voltage deviation simultaneously, slope-adjusting and voltage-shifting approaches are adopted at the secondary control level. The pro- posed tertiary control realizes precise active and reactive power exchange through parallel BPCs for economical operation. The proposed hierarchical control is applied for parallel BPCs of a grid-connected DC microgrid and can operate coordinately with the control for controllable/uncontrollable distributional generation. The effectiveness of the proposed control method is verified by corresponding simulation tests based on Matlab/Simulink, and the performance of the hierarchical control is evaluated for prac- tical applications.