We have set up a new reduced model Hamiltonian for the polariton system, in which the nonlinear interaction contains the rotating term k l ( a + b + ab+) and the attractive two-mode squeezed coupling - k2 ( a ...We have set up a new reduced model Hamiltonian for the polariton system, in which the nonlinear interaction contains the rotating term k l ( a + b + ab+) and the attractive two-mode squeezed coupling - k2 ( a + b+ + ab ) . The dynamical evolution of this system has been solved and the nonclassical features relevant to the second-order and high-order squeezing have been obtained in an analytical form. For the first time, in contrast to the existing result, we have confirmed for the phonon field that the attractive two-mode squeezed interaction will not only result in the second-order and high-order squeezing in X-component with the time evolution, but also in time average. Furthermore, the phenomena of collapse and revival of inversion will occur as well in the time evolution of the average number of photon and phonon, as also in the second-order and high-order squeezing of photon field, particularly, in the high-order squeezing of phonon field.展开更多
The carrier mobility of Si material can be enhanced under strain,and the stress magnitude can be measured by the Raman spectrum.In this paper,we aim to study the penetration depths into biaxially-strained Si materials...The carrier mobility of Si material can be enhanced under strain,and the stress magnitude can be measured by the Raman spectrum.In this paper,we aim to study the penetration depths into biaxially-strained Si materials at various Raman excitation wavelengths and the stress model corresponding to Raman spectrum in biaxially-strained Si.The experimental results show that it is best to use 325 nm excitation to measure the material stress in the top strained Si layer,and that one must pay attention to the distortion of the buffer layers on measuring results while 514 nm excitation is also measurable.Moreover,we established the stress model for Raman spectrum of biaxially-strained Si based on the Secular equation.One can obtain the stress magnitude in biaxially-strained Si by the model,as long as the results of the Raman spectrum are given.Our quantitative results can provide valuable references for stress analysis on strained materials.展开更多
Microfluidic droplets have emerged as novel platforms for chemical and biological applications. Manipulation of droplets has thus attracted increasing attention. Different from solid particles, deformable droplets can...Microfluidic droplets have emerged as novel platforms for chemical and biological applications. Manipulation of droplets has thus attracted increasing attention. Different from solid particles, deformable droplets cannot be efficiently controlled by inertia-driven approaches. Here, we report a study on the lateral migration of dual droplet trains in a double spiral microchannel at low Reynolds numbers. The dominant driving mechanism is elucidated as wall effect originated from the droplet deformation. Three types of migration modes are observed with varying Reynolds numbers and the size-dependent mode is intensively investigated. We obtain empirical formulas by relating the migration to Reynolds numbers and droplet sizes. The effect of droplet deformability on the migration and the detailed migration behavior along the double spiral channel are discussed. Numerical simulations are also performed and yielded in qualitative agreement with the experiments. could be a promising alternative to existing inertia-driven approaches bio-particles. This proposed low Re approach based on lateral migration especially concerning deformable entities and susceptible展开更多
基金Supported by the Foundation of Scientific Research Education and Innovations under Grant No.11609506,Jinan University
文摘We have set up a new reduced model Hamiltonian for the polariton system, in which the nonlinear interaction contains the rotating term k l ( a + b + ab+) and the attractive two-mode squeezed coupling - k2 ( a + b+ + ab ) . The dynamical evolution of this system has been solved and the nonclassical features relevant to the second-order and high-order squeezing have been obtained in an analytical form. For the first time, in contrast to the existing result, we have confirmed for the phonon field that the attractive two-mode squeezed interaction will not only result in the second-order and high-order squeezing in X-component with the time evolution, but also in time average. Furthermore, the phenomena of collapse and revival of inversion will occur as well in the time evolution of the average number of photon and phonon, as also in the second-order and high-order squeezing of photon field, particularly, in the high-order squeezing of phonon field.
基金supported by the Research Fund for the Doctoral Program of Higher Education of China(Grant No.JY0300122503)the NLAIC Research Fund(Grant No.P140c090303110c0904)
文摘The carrier mobility of Si material can be enhanced under strain,and the stress magnitude can be measured by the Raman spectrum.In this paper,we aim to study the penetration depths into biaxially-strained Si materials at various Raman excitation wavelengths and the stress model corresponding to Raman spectrum in biaxially-strained Si.The experimental results show that it is best to use 325 nm excitation to measure the material stress in the top strained Si layer,and that one must pay attention to the distortion of the buffer layers on measuring results while 514 nm excitation is also measurable.Moreover,we established the stress model for Raman spectrum of biaxially-strained Si based on the Secular equation.One can obtain the stress magnitude in biaxially-strained Si by the model,as long as the results of the Raman spectrum are given.Our quantitative results can provide valuable references for stress analysis on strained materials.
基金supported by the National Natural Science Foundation of China(Grant Nos.11572334,11272321 and 11402274)
文摘Microfluidic droplets have emerged as novel platforms for chemical and biological applications. Manipulation of droplets has thus attracted increasing attention. Different from solid particles, deformable droplets cannot be efficiently controlled by inertia-driven approaches. Here, we report a study on the lateral migration of dual droplet trains in a double spiral microchannel at low Reynolds numbers. The dominant driving mechanism is elucidated as wall effect originated from the droplet deformation. Three types of migration modes are observed with varying Reynolds numbers and the size-dependent mode is intensively investigated. We obtain empirical formulas by relating the migration to Reynolds numbers and droplet sizes. The effect of droplet deformability on the migration and the detailed migration behavior along the double spiral channel are discussed. Numerical simulations are also performed and yielded in qualitative agreement with the experiments. could be a promising alternative to existing inertia-driven approaches bio-particles. This proposed low Re approach based on lateral migration especially concerning deformable entities and susceptible