期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向数字文旅的图像文本跨模态检索方法 被引量:1
1
作者 高蕴梅 《情报资料工作》 CSSCI 北大核心 2022年第1期71-80,共10页
[目的/意义]图像文本跨模态检索应用对最大化利用数字文旅资源具有重要意义。然而,数字文旅领域的图像文本跨模态检索方法面临长文本挑战、数据缺失、内存资源有限等问题。为此,我们提出了一种新的基于Transformers和MobileNet V3模型... [目的/意义]图像文本跨模态检索应用对最大化利用数字文旅资源具有重要意义。然而,数字文旅领域的图像文本跨模态检索方法面临长文本挑战、数据缺失、内存资源有限等问题。为此,我们提出了一种新的基于Transformers和MobileNet V3模型的数字文旅图像文本跨模态方法。[方法/过程]首先,提出了基于自注意力机制的双层多组Transformers模型从标题、正文和评论等文本中学习具有互补性的文本特征;其次,设计了FastR-CNN和MobileNet V3模型学习图像局部细粒度特征;最后,提出了多元线性回归方法在共享子空间补全缺失数据。构建以图搜文和以文搜图的双向三元损失函数学习模型参数。[结果/结论]在标准数据集Flickr30k、自建数据集CulTour-Sha和有数据缺失的数据集Flickr30k-1与CulTour-Sha-1上的大量实验结果表明,我们的方法在召回率、内存需求和计算速度等方面优于当前几种先进的跨模态检索方法。 展开更多
关键词 数字文旅 跨模态检索 深度学习特征 双向三元组损失函数 精细特征
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部