期刊文献+
共找到94篇文章
< 1 2 5 >
每页显示 20 50 100
基于双向二维加权主元分析的人脸表情识别
1
作者 韩金玉 赵瑞 《计算机工程与应用》 CSCD 北大核心 2008年第10期179-180,184,共3页
提出了一种双向二维加权主元分析方法用于人脸表情特征提取,该方法从水平和垂直两个方向对图像矩阵进行降维处理,大幅降低了所提取的特征数目;且考虑到人脸不同部位包含不同的表情信息这一特点,对各个特征赋予不同的权重系数。实验证明... 提出了一种双向二维加权主元分析方法用于人脸表情特征提取,该方法从水平和垂直两个方向对图像矩阵进行降维处理,大幅降低了所提取的特征数目;且考虑到人脸不同部位包含不同的表情信息这一特点,对各个特征赋予不同的权重系数。实验证明,与已有的二维主元分析相比较,该方法不但运算速度快,且获得了更高的识别率。 展开更多
关键词 表情识别 特征提取 分析 双向二维加权主元分析
下载PDF
基于双向二维加权主分量分析的面部表情识别
2
作者 韩金玉 尤奎军 《哈尔滨商业大学学报(自然科学版)》 CAS 2010年第3期320-323,共4页
将二维主分量分析方法与加权的方法相结合,给出了一种双向二维加权主分量分析方法用于面部表情特征提取,该方法从水平和垂直两个方向对图像矩阵进行降维处理,大幅降低了所提取的特征数目;且考虑到面部不同部位包含不同的表情信息这一特... 将二维主分量分析方法与加权的方法相结合,给出了一种双向二维加权主分量分析方法用于面部表情特征提取,该方法从水平和垂直两个方向对图像矩阵进行降维处理,大幅降低了所提取的特征数目;且考虑到面部不同部位包含不同的表情信息这一特点,对各个特征赋予不同的权重系数.经实验验证了该方法的有效性. 展开更多
关键词 表情识别 特征提取 分量分析 双向加权分量分析
下载PDF
二维主元分析在人脸识别中的应用研究 被引量:22
3
作者 何国辉 甘俊英 《计算机工程与设计》 CSCD 北大核心 2006年第24期4667-4669,4673,共4页
结合二维主元分析(two-dimensionalprincipalcomponentanalysis,2DPCA)的特点,将2DPCA算法用于人脸识别。它与主元分析(principalcomponentanalysis,PCA)的不同之处在于,2DPCA算法以图像矩阵为分析对象;而PCA算法以图像的一维向量为分... 结合二维主元分析(two-dimensionalprincipalcomponentanalysis,2DPCA)的特点,将2DPCA算法用于人脸识别。它与主元分析(principalcomponentanalysis,PCA)的不同之处在于,2DPCA算法以图像矩阵为分析对象;而PCA算法以图像的一维向量为分析对象。2DPCA算法是直接利用原始图像矩阵构造图像的协方差矩阵。而PCA算法需对原始图像矩阵先降维、再将降维矩阵转换成列向量,然后构造图像的协方差矩阵。为了测试和评估2DPCA算法的性能,在ORL(olivettiresearchlaboratory)与Yale人脸数据库上进行了实验,结果表明,2DPCA算法用于人脸识别的正确识别率高于PCA算法。同时,也显示了2DPCA算法在特征提取方面比PCA算法更有效。 展开更多
关键词 分析 分析 人脸识别 特征提取 特征压缩 模式识别
下载PDF
小波重构与局部DCT的二维主元分析掌纹识别 被引量:3
4
作者 陈晓华 李春芝 蒋云良 《光子学报》 EI CAS CSCD 北大核心 2009年第6期1566-1571,共6页
为了解决掌纹特征提取过程中,手掌的非平面问题导致的伪主线噪音信息并简化运算,对重构的掌纹图像进行了局部离散余弦变换.解决了重构后图像噪音敏感性问题,有效地区分了掌纹主线、掌纹褶纹和乳突纹.由二维主元分析算法获得较稳健的识... 为了解决掌纹特征提取过程中,手掌的非平面问题导致的伪主线噪音信息并简化运算,对重构的掌纹图像进行了局部离散余弦变换.解决了重构后图像噪音敏感性问题,有效地区分了掌纹主线、掌纹褶纹和乳突纹.由二维主元分析算法获得较稳健的识别特征.通过香港理工大学公布的PolyU掌纹数据库的实验,同二维主元分析算法相比,小波重构与局部离散余弦变换的2DPCA掌纹识别算法正确识别率较高,识别效率较高. 展开更多
关键词 掌纹识别 提升小波重构 局部离散余弦变换 分析
下载PDF
局部二维主元分析的人脸识别新方法 被引量:2
5
作者 刘文超 陈艳红 陈力 《计算机工程与应用》 CSCD 北大核心 2006年第24期53-55,101,共4页
人脸姿态、表情、光照等变化是影响人脸识别的主要因素,如何减轻这些因素对识别率的影响是人脸识别的研究关键所在。R.G等人提出了MPCA方法,通过对人脸图像进行一次分块处理,减少了这些因素产生的影响。然而MPCA方法只消除了部分影响,... 人脸姿态、表情、光照等变化是影响人脸识别的主要因素,如何减轻这些因素对识别率的影响是人脸识别的研究关键所在。R.G等人提出了MPCA方法,通过对人脸图像进行一次分块处理,减少了这些因素产生的影响。然而MPCA方法只消除了部分影响,仍未能完全解决这一问题。文章提出了一种进行二次分块处理的新方法——局部二维主元分析方法,进一步消除了这些因素所产生的影响。通过在Yale国际标准人脸库及UMIST人脸库上进行验证,该方法大大提高了人脸识别率。 展开更多
关键词 人脸识别 特征提取 分析 分析
下载PDF
基于二维主元分析的间歇过程故障诊断 被引量:2
6
作者 孔晓光 郭金玉 林爱军 《计算机应用》 CSCD 北大核心 2013年第2期350-352,共3页
传统的多向主元分析(MPCA)已广泛应用于监视多变量间歇过程。在MPCA算法中,三维的间歇过程数据需要转换为高维的二维向量,导致计算量和存储空间大,同时不可避免地丢失一些重要信息。因此,提出一种新的基于二维主元分析(2DPCA)的故障诊... 传统的多向主元分析(MPCA)已广泛应用于监视多变量间歇过程。在MPCA算法中,三维的间歇过程数据需要转换为高维的二维向量,导致计算量和存储空间大,同时不可避免地丢失一些重要信息。因此,提出一种新的基于二维主元分析(2DPCA)的故障诊断方法。由于每个批次的间歇过程数据是一个二维向量(矩阵),应用以各个批次矩阵为分析对象的2DPCA算法,避免矢量化,存储空间和存储需求小;另外,2DPCA采用各个批次的协方差的平均值来进行建模,能够更加准确地反映出不同类型的故障,在一定程度上增强了故障诊断的准确性。半导体工业实例的监视结果说明,2DPCA方法优于MPCA。 展开更多
关键词 间歇过程 故障诊断 分析 多向分析 分析
下载PDF
一种局部加权的二维主成分分析算法及其在人脸识别中的应用 被引量:2
7
作者 金一 阮秋琦 《智能系统学报》 2007年第3期25-29,共5页
提出了一种将局部特征加权与二维主成分分析相结合的局部加权的二维主成分分析方法.引入了二维局部加权特征子空间的概念,将各类样本映射到这个局部加权特征子空间,再通过计算测试样本到加权子空间的距离进行样本的分类.使用这种方法在... 提出了一种将局部特征加权与二维主成分分析相结合的局部加权的二维主成分分析方法.引入了二维局部加权特征子空间的概念,将各类样本映射到这个局部加权特征子空间,再通过计算测试样本到加权子空间的距离进行样本的分类.使用这种方法在ORL人脸库上进行测试,结果表明,经过局部特征加权的二维主成分分析方法比普通的二维主成分分析方法具有更优的性能,并且在提高识别率的同时算法的复杂程度并没有明显增加. 展开更多
关键词 成分分析 局部加权 人脸识别 加权特征提取
下载PDF
基于双向二维主成分分析的掌纹识别 被引量:4
8
作者 秦娜 金炜东 刘景波 《微计算机信息》 2009年第4期238-239,266,共3页
掌纹识别是一门新兴的生物特征识别技术。使用主成分分析对图像向量进行处理,向量维数一般都很高。二维主成分分析是直接采用二维图像矩阵来构建方差矩阵,与一维主成分分析相比能更精确地计算原始数据的协方差矩阵,双向二维主成分分析... 掌纹识别是一门新兴的生物特征识别技术。使用主成分分析对图像向量进行处理,向量维数一般都很高。二维主成分分析是直接采用二维图像矩阵来构建方差矩阵,与一维主成分分析相比能更精确地计算原始数据的协方差矩阵,双向二维主成分分析是二维主成分分析的改进算法,将其应用于掌纹识别,通过在水平和垂直2个方向上各执行1次二维主成分分析运算,消除了掌纹图像行和列的相关性,运用新准则选取了更适合于分类的主分量,大大压缩了特征的维数。在香港Poly-technic University的Palmprint Database测试结果表明,该方法具有更高的识别率和更低的计算复杂度。 展开更多
关键词 成分分析 双向成分分析 掌纹识别
下载PDF
一种基于Fisher准则的二维主元分析表情识别方法 被引量:2
9
作者 程剑 应自炉 《五邑大学学报(自然科学版)》 CAS 2006年第2期42-46,共5页
提出了一种基于Fisher准则进行特征选择的二维主元分析表情识别方法.首先对训练样本做二维主元分析,然后再根据Fisher准则,按Fisher比的大小选择特征向量作为投影轴,最后用最近邻方法进行分类.在JAFFE人脸表情静态图像库上进行实验,与... 提出了一种基于Fisher准则进行特征选择的二维主元分析表情识别方法.首先对训练样本做二维主元分析,然后再根据Fisher准则,按Fisher比的大小选择特征向量作为投影轴,最后用最近邻方法进行分类.在JAFFE人脸表情静态图像库上进行实验,与按特征值的大小来选择特征向量相比,该方法更有效. 展开更多
关键词 FISHER准则 分析 表情识别
下载PDF
基于小波树和二维主元分析的人脸识别 被引量:1
10
作者 刘悦婷 《佳木斯大学学报(自然科学版)》 CAS 2015年第1期109-112,共4页
为提高人脸识别率,结合小波树和子空间分析中的二维主元分析,提出基于小波树和二维主元分析的人脸识别算法(WTMPCA).该算法先利用小波变换公式,在人脸图像上计算出一个小波近似分量和三个细节分量;分层次重组小波近似分量,得到新样本集... 为提高人脸识别率,结合小波树和子空间分析中的二维主元分析,提出基于小波树和二维主元分析的人脸识别算法(WTMPCA).该算法先利用小波变换公式,在人脸图像上计算出一个小波近似分量和三个细节分量;分层次重组小波近似分量,得到新样本集;最后在此样本集上使用二维主元分析进行人脸识别.ORL和CAS-PEAL-R1人脸库的实验结果表明,与基于图像矩阵的二维主元分析(2D-PCA)相比较,WTMPCA方法的人脸识别率为96%,对光照条件、脸部表情变化有良好的鲁棒性. 展开更多
关键词 小波树 分析 人脸识别 小波变换
下载PDF
基于双向二维主成分分析的运动目标跟踪
11
作者 戚培庆 张超 +1 位作者 吕钊 吴小培 《计算机工程与应用》 CSCD 2013年第22期155-159,共5页
为克服二维主成分分析(2DPCA)跟踪效率低的缺点,提出一种基于双向二维主成分分析(Bi-2DPCA)的运动目标跟踪算法。采用双向二维主成分分析作为目标表示的方法建立目标图像子空间,同时在图像均值与协方差矩阵的更新中引入基于目标图像匹... 为克服二维主成分分析(2DPCA)跟踪效率低的缺点,提出一种基于双向二维主成分分析(Bi-2DPCA)的运动目标跟踪算法。采用双向二维主成分分析作为目标表示的方法建立目标图像子空间,同时在图像均值与协方差矩阵的更新中引入基于目标图像匹配程度的自适应增量因子的增量学习的方法进一步提高算法效率。在多个包含动态背景的图像序列上的对比实验结果表明算法能在目标处于部分遮挡的情况下准确跟踪目标,同时算法在效率上高于基于二维主成分分析的目标跟踪算法。 展开更多
关键词 成分分析 双向成分分析 目标跟踪 增量学习
下载PDF
一种基于PSO权重优化的加权二维主分量分析方法
12
作者 徐春明 《大连民族学院学报》 CAS 2009年第3期264-266,共3页
针对二维主分量分析中图像协方差矩阵的估计问题,在二维主分量分析的基础上给出了一种新的加权图像协方差估计方法,运用粒子群优化算法对权重参数进行并行优化,以抽取更有效的分类特征。在ORL人脸数据库上的实验结果表明,识别性能优于... 针对二维主分量分析中图像协方差矩阵的估计问题,在二维主分量分析的基础上给出了一种新的加权图像协方差估计方法,运用粒子群优化算法对权重参数进行并行优化,以抽取更有效的分类特征。在ORL人脸数据库上的实验结果表明,识别性能优于二维主分量分析。 展开更多
关键词 分量分析 加权 PSO算法 特征抽取 人脸识别
下载PDF
分块双向二维主成分分析与模糊分类的掌纹识别 被引量:2
13
作者 翟林 潘新 +3 位作者 刘霞 郜晓晶 宁丽娜 韩璠 《计算机应用与软件》 CSCD 2015年第4期149-152,共4页
掌纹识别是一门新兴的生物特征识别技术。提出基于分块双向二维主成分分析(M(2D)2PCA)和模糊分类的掌纹识别方法。该算法利用M(2D)2PCA提取掌纹的局部特征,并利用模糊分类策略。这种方法可以有效提取掌纹的局部特征,并且直接对子图像矩... 掌纹识别是一门新兴的生物特征识别技术。提出基于分块双向二维主成分分析(M(2D)2PCA)和模糊分类的掌纹识别方法。该算法利用M(2D)2PCA提取掌纹的局部特征,并利用模糊分类策略。这种方法可以有效提取掌纹的局部特征,并且直接对子图像矩阵进行特征抽取,能够精确计算协方差矩阵的特征向量;分类阶段引入模糊理论,应用于掌纹识别问题。最后使用北京交通大学掌纹数据库进行识别实验,结果表明,该方法可得到更高的识别率和更少的识别时间。 展开更多
关键词 分块 双向成分分析 模糊分类 掌纹识别
下载PDF
基于分块双向二维主成分分析的步态识别 被引量:1
14
作者 卢威 陈后金 《计算机应用与软件》 CSCD 2011年第9期232-234,共3页
提出了一种基于步态能量图和分块双向二维主成分分析进行步态特征的算法。首先对图像序列预处理提取运动轮廓,通过分析区域分布直方图检测出运动周期,生成步态能量图描述步态的空间和时间特性,继而使用分块双向二维主成分提取步态特征... 提出了一种基于步态能量图和分块双向二维主成分分析进行步态特征的算法。首先对图像序列预处理提取运动轮廓,通过分析区域分布直方图检测出运动周期,生成步态能量图描述步态的空间和时间特性,继而使用分块双向二维主成分提取步态特征用以分类,最后在USF步态数据库上测试,并与其它几个算法进行比较。实验结果显示,该方法有更高的识别率和更低的计算复杂度。 展开更多
关键词 步态识别 步态能量图 成分分析 分块双向成分分析 特征提取
下载PDF
基于离散广义S变换与双向二维主成分分析的内燃机故障诊断 被引量:3
15
作者 张世雄 蔡艳平 +1 位作者 石林锁 王旭 《中国机械工程》 EI CAS CSCD 北大核心 2018年第8期899-905,共7页
针对内燃机气阀机构的故障诊断问题,提出一种将离散广义S变换和双向二维主成分分析(TD-2DPCA)相结合的诊断方法。该方法首先利用离散广义S变换将内燃机缸盖振动信号生成振动谱图像,然后利用TD-2DPCA对图像进行特征提取,有效减小特征系... 针对内燃机气阀机构的故障诊断问题,提出一种将离散广义S变换和双向二维主成分分析(TD-2DPCA)相结合的诊断方法。该方法首先利用离散广义S变换将内燃机缸盖振动信号生成振动谱图像,然后利用TD-2DPCA对图像进行特征提取,有效减小特征系数矩阵的维数,最后,通过最近邻分类器进行分类识别。将该方法应用于内燃机气阀机构8种工况的诊断实例中,对比不同时频表征及特征提取方法的计算效率和识别精度,结果表明该方法可为内燃机故障诊断提供一条新途径。 展开更多
关键词 内燃机 离散广义S变换 双向成分分析 分类识别
下载PDF
基于稀疏化双向二维主成分分析的人脸识别
16
作者 张裕平 龚晓峰 雒瑞森 《计算机工程》 CAS CSCD 北大核心 2019年第12期232-236,共5页
双向二维主成分分析((2D)2PCA)易受异常值影响,鲁棒性差,且所提取的特征向量是非稀疏的。针对上述不足,提出基于L1范数的稀疏双向二维主成分分析方法(2D)2PCA-L1S。在(2D)2PCA目标函数中加入L1范数约束,以提高算法的抗干扰能力,同时引... 双向二维主成分分析((2D)2PCA)易受异常值影响,鲁棒性差,且所提取的特征向量是非稀疏的。针对上述不足,提出基于L1范数的稀疏双向二维主成分分析方法(2D)2PCA-L1S。在(2D)2PCA目标函数中加入L1范数约束,以提高算法的抗干扰能力,同时引入弹性网约束,通过Lasso与Ridge惩罚函数实现稀疏性。在Feret和Yale数据库中进行基于最近邻的人脸分类、人脸重构和基于粒子群优化SVM参数的人脸识别实验,结果表明,相较于2DPCA、(2D)2PCA、(2D)2PCA-L1等主成分分析方法,该方法能准确提取人脸主要信息,人脸识别和人脸重构效果较好。 展开更多
关键词 双向成分分析 稀疏化 粒子群优化 支持向量机 人脸识别
下载PDF
改进的完全二维主成分分析及其在步态识别中的应用研究 被引量:5
17
作者 贲晛烨 安实 +1 位作者 王科俊 王健 《计算机应用研究》 CSCD 北大核心 2011年第6期2088-2091,共4页
对完全二维主成分分析算法进行改进,提出三种不同的加权策略,详细地分析它们的本质,并将其应用到步态识别中。在中国科学院自动化所提供的CASIA(B)步态数据库下验证加权方案的有效性,实验结果表明加权幂指数的选取对识别结果的影响比较... 对完全二维主成分分析算法进行改进,提出三种不同的加权策略,详细地分析它们的本质,并将其应用到步态识别中。在中国科学院自动化所提供的CASIA(B)步态数据库下验证加权方案的有效性,实验结果表明加权幂指数的选取对识别结果的影响比较大,通过实验可以选取最佳的权值,能够做到提高识别性能。最后针对各个行走状态下的步态,分析了背包步态识别率低的原因。 展开更多
关键词 步态识别 步态能量图 完全成分分析 加权完全成分分析
下载PDF
基于分块双向二维主成分分析的人脸目标识别
18
作者 乐新宇 肖小霞 《计算机技术与发展》 2019年第1期114-117,共4页
人脸目标识别是目前模式识别、计算机视觉等领域的研究热点问题之一,现有的大多数人脸目标识别算法的条件假设都较为严格,将其应用于现实环境中时,人脸识别的精度较低。针对现实人脸识别中由于光照、表情、姿态或其他物体引起的面部遮... 人脸目标识别是目前模式识别、计算机视觉等领域的研究热点问题之一,现有的大多数人脸目标识别算法的条件假设都较为严格,将其应用于现实环境中时,人脸识别的精度较低。针对现实人脸识别中由于光照、表情、姿态或其他物体引起的面部遮挡而严重影响识别率的问题,提出了一种分块双向二维主成分分析融合局部特征方法。首先,将图像分解为互不重叠的子块,每个子块包含重要的局部信息,利用(2D)2PCA对子块进行特征提取并投影到特征子空间;然后,对每个子块分别设计一个分类器并在一定置信度范围内判别测试样本所属类别;最后,根据所有子块所属类别的置信度之和完成人脸分类。在两个人脸识别数据库上的实验结果表明,相比其他几种人脸识别算法,该方法取得了更高的识别精度。 展开更多
关键词 人脸识别 双向成分分析 特征提取 局部特征 置信度
下载PDF
小波包变换和二维四元数主成分的人脸识别
19
作者 徐永红 丛文龙 洪文学 《计算机工程与应用》 CSCD 北大核心 2011年第30期176-179,205,共5页
提出了一种用小波包变换(WPT)和二维四元数主成分分析(2DQPCA)的灰度人脸图像识别算法。将对人脸灰度图像经小波包变换得到的分解系数构成四元数矩阵,通过2DQPCA实现数据降维并构造四元数特征空间,将其划分为若干子块,对每个子块根据最... 提出了一种用小波包变换(WPT)和二维四元数主成分分析(2DQPCA)的灰度人脸图像识别算法。将对人脸灰度图像经小波包变换得到的分解系数构成四元数矩阵,通过2DQPCA实现数据降维并构造四元数特征空间,将其划分为若干子块,对每个子块根据最近邻算法进行分类并对分类结果投票,根据投票结果实现最终的人脸识别。该方法与PCA等传统方法在Orl、Yale等四个人脸数据库上的实验结果比较表明,该方法在识别率上有明显优势,且对光照、表情变化具有鲁棒性。 展开更多
关键词 人脸识别 小波包变换 成分分析
下载PDF
基于改进的双向二维线性判别分析的人脸识别
20
作者 叶延亮 徐正光 《计算机工程与应用》 CSCD 北大核心 2008年第31期188-190,共3页
针对传统的二维线性判别方法提取出的人脸特征系数维数大的问题,提出一个改进的双向二维线性判别分析方法GB2DLDA。双向压缩类内和类间散布矩阵,用压缩后的散布矩阵构成两个Fisher鉴别准则函数,求出两个投影矩阵,然后人脸图像矩阵向投... 针对传统的二维线性判别方法提取出的人脸特征系数维数大的问题,提出一个改进的双向二维线性判别分析方法GB2DLDA。双向压缩类内和类间散布矩阵,用压缩后的散布矩阵构成两个Fisher鉴别准则函数,求出两个投影矩阵,然后人脸图像矩阵向投影矩阵投影,提取出特征系数。实验证明在相同识别率下,用此方法提取的特征系数维数明显少于其它二维线性判别分析方法。在选择合适的特征向量的情况下,此方法的识别率要好于其它二维线性判别分析方法。 展开更多
关键词 分析 双向线性鉴别分析方法 改进的双向线性判别分析方法 压缩 投影矩阵
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部