期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
改进双向二维局部保持投影的人脸识别算法 被引量:2
1
作者 吴斌 王利龙 邵延华 《电子科技大学学报》 EI CAS CSCD 北大核心 2019年第6期904-909,924,共7页
为更好地处理图像小样本问题,且克服二维局部保持投影(2DLPP)算法只能保持数据局部性质的缺陷,通过结合二维主成分分析(2DPCA)和二维线性鉴别分析(2DLDA)的算法特性,提出了一种改进的双向二维局部保持投影的人脸识别算法.首先,引入样本... 为更好地处理图像小样本问题,且克服二维局部保持投影(2DLPP)算法只能保持数据局部性质的缺陷,通过结合二维主成分分析(2DPCA)和二维线性鉴别分析(2DLDA)的算法特性,提出了一种改进的双向二维局部保持投影的人脸识别算法.首先,引入样本类别信息改进权重矩阵,增强2DLPP算法对样本变化的鲁棒性;其次,提出改进2DLPP+2DPCA、2DLPP+2DLDA两种融合算法并分别用于输入样本图像数据的行、列方向特征提取.在特征选择后得到行、列方向上的最优投影;最后,通过对样本数据进行行、列方向投影,利用最近邻分类器对样本数据进行分类并获得在给定数据集上的识别结果.在人脸数据集ORL、YALE和AR上的实验结果表明,该算法在人脸识别性能上总体优于2DPCA、2DLDA、2DLPP、(2D)2PCA、(2D)2LDA、(2D)2PCALDA和(2D)2LPP-PCA等算法. 展开更多
关键词 人脸识别 特征提取 线性鉴别分析 局部保持投影 主成分分析
下载PDF
双向二维局部保持鉴别投影应用于人脸识别
2
作者 周慧 陈熙 刘增力 《计算机工程与应用》 CSCD 北大核心 2015年第22期163-167,共5页
双向二维局部保持映射(双向2DLPP)与二维局部保持映射(2DLPP)比较,双向2DLPP同时对图像的行方向和列方向进行降维处理,可以采用较少的系数有效地表示图像。为了进一步增强双向2DLPP算法的分类能力,将双向2DLPP所提取的特征采用线性判别... 双向二维局部保持映射(双向2DLPP)与二维局部保持映射(2DLPP)比较,双向2DLPP同时对图像的行方向和列方向进行降维处理,可以采用较少的系数有效地表示图像。为了进一步增强双向2DLPP算法的分类能力,将双向2DLPP所提取的特征采用线性判别式分析(LDA)进行分类,从而形成了一种新的监督算法:鉴别双向二维局部保持投影。理论分析表明,无论在计算量还是内存要求方面,所提鉴别双向二维局部保持投影算法比双向2DLPP和主成分分析+线性判别式分析(PCA+LDA)要少,而且在ORL和Yale数据库上的人脸识别实验表明,新算法的识别性能比双向2DLPP和PCA+LDA算法要好,且具有较少的计算复杂度。 展开更多
关键词 双向局部保持映射 线性判别式分析 人脸识别 计算复杂度
下载PDF
基于无参数二维判别局部保持投影算法的人脸识别 被引量:2
3
作者 龚劬 王珂 +1 位作者 冉清华 谷雅宁 《计算机工程与应用》 CSCD 北大核心 2016年第10期151-156,共6页
通过向二维局部保持投影(2D-LPP)算法中引入类间约束和类标识信息,得到二维判别局部保持投影(2D-DLPP)算法,使它拥有更多的判别信息。但它却面临复杂的参数选择问题,这使得它在解决识别问题时受到限制。为解决此问题,构造无参数的相似矩... 通过向二维局部保持投影(2D-LPP)算法中引入类间约束和类标识信息,得到二维判别局部保持投影(2D-DLPP)算法,使它拥有更多的判别信息。但它却面临复杂的参数选择问题,这使得它在解决识别问题时受到限制。为解决此问题,构造无参数的相似矩阵,提出无参数的二维判别局部投影(无参数2D-DLPP)算法。在Yale和ORL人脸库上的仿真实验结果表明,该算法与二维判别局部保持投影(2D-DLPP)、二维局部保持投影法(2D-LPP)和二维线性判别分析法(2D-LDA)相比能够取得更高的识别率。 展开更多
关键词 人脸识别 特征提取 判别局部保持投影 无参数
下载PDF
双向二维加权LPP语音特征降维算法 被引量:1
4
作者 齐晓倩 陈鸿昶 黄海 《小型微型计算机系统》 CSCD 北大核心 2012年第7期1588-1591,共4页
提出一种双向二维加权局部保持投影算法(Two-directional Two-dimensional Weighted Locality Preserving Projections,(2D)2WLPP)用于语音特征提取后维度的降低,考虑到普通的二维降维算法只能从一个方向进行特征降维且所降至的维数选... 提出一种双向二维加权局部保持投影算法(Two-directional Two-dimensional Weighted Locality Preserving Projections,(2D)2WLPP)用于语音特征提取后维度的降低,考虑到普通的二维降维算法只能从一个方向进行特征降维且所降至的维数选择非常受限,该方法能够从水平和垂直两个方向对语音矩阵进行降维处理,这样可以大大降低提取后的语音特征数目;考虑到不同投影向量对保持局部结构的重要程度不同,进而对各个特征赋予不同的权重系数.实验证明,该算法运算速度快,与已有的二维局部保持投影相比,获得了更高的识别率. 展开更多
关键词 语音特征 局部保持投影 双向二维加权局部保持投影
下载PDF
基于二维局部保持鉴别分析的特征提取算法 被引量:8
5
作者 卢官明 左加阔 《南京邮电大学学报(自然科学版)》 北大核心 2014年第5期1-8,共8页
提出了一种二维局部保持鉴别分析(Two-dimensional Locality Preserving Discriminant Analysis,2D-LPDA)特征提取算法。该算法直接对图像矩阵进行运算而不需要将矩阵转化为向量后进行运算,较好地保持了图像相邻像素之间的空间结构关系;... 提出了一种二维局部保持鉴别分析(Two-dimensional Locality Preserving Discriminant Analysis,2D-LPDA)特征提取算法。该算法直接对图像矩阵进行运算而不需要将矩阵转化为向量后进行运算,较好地保持了图像相邻像素之间的空间结构关系;在LPP算法的基础上,利用训练样本的类别信息计算二维类间散度矩阵和二维类内散度矩阵,并在2D-LPDA的目标函数中引入最大间距准则(Maximum Margin Criterion,MMC),从而求得具有良好鉴别能力的投影向量,同时还避免了小样本情况下矩阵的奇异性问题。通过在ORL人脸图像库上的人脸识别和新生儿面部图像库上的疼痛表情识别实验,验证了所提出的算法的有效性。 展开更多
关键词 人脸识别 表情识别 特征提取 局部保持投影 局部保持鉴别分析 最大间距准则
下载PDF
空间平滑局部保持投影用于ISAR目标识别 被引量:1
6
作者 蔡洪 何强 +1 位作者 韩壮志 尚朝轩 《光电工程》 CAS CSCD 北大核心 2009年第7期8-13,共6页
由于目标运动及其所处环境的复杂性,雷达目标数据之间往往呈现出局部的非线性,如果采用传统的线性子空间方法降维,必将会使雷达目标识别性能有所下降。基于以上原因,论文在详细分析ISAR二维像非线性流形结构特点的基础上,将流形学习方... 由于目标运动及其所处环境的复杂性,雷达目标数据之间往往呈现出局部的非线性,如果采用传统的线性子空间方法降维,必将会使雷达目标识别性能有所下降。基于以上原因,论文在详细分析ISAR二维像非线性流形结构特点的基础上,将流形学习方法中的空间平滑局部保持投影(Spatially Smooth Locality Preserving Projections,SSLPP)算法应用于ISAR二维像的特征提取和维数约简,并采用k近邻分类器对三类飞机目标进行了识别。与传统的子空间方法相比,SSLPP算法充分考虑了图像中各相邻像素之间的相关性,因而可获得更多的图像空间局部信息。仿真实验结果表明,与PCA、LDA、LPP等算法相比,该方法具有更好的识别性能。 展开更多
关键词 空间平滑局部保持投影 Laplacian平滑 ISAR 目标识别 雷达成像
下载PDF
基于改进型局部保持投影的作物生长特征优化方法
7
作者 郏东耀 胡泊 邹胜雄 《农业工程学报》 EI CAS CSCD 北大核心 2014年第15期206-213,共8页
由于现有的用于农业作物生长监测数据的特征优化方法—局部保持投影(locality preserving projection,LPP)只保留局部信息,同时存在未考虑样本类别信息导致特征提取时误分类,准确率与数据优化效率并不理想。针对上述问题,提出了改进型LP... 由于现有的用于农业作物生长监测数据的特征优化方法—局部保持投影(locality preserving projection,LPP)只保留局部信息,同时存在未考虑样本类别信息导致特征提取时误分类,准确率与数据优化效率并不理想。针对上述问题,提出了改进型LPP方法,并将其用于作物生长特征的优化。首先将样本利用二维主成分分析(two-dimensional principal component analysis,2DPCA)进行初步降维,保留原样本数据中的整体空间信息;然后提出优化的2类子图—聚集子图和分离子图,用来描述不同类别数据之间的关联信息;然后提出优化的2类子图对不同类别数据间的远近关系进行描述;最后采用改进型LPP算法,将数据进一步投影到低维空间,提取样本的局部信息,完成样本特征优化。试验分析表明,改进型LPP具有很好的适应性,最高支持向量机(support vector machine,SVM)分类准确率能够达到96%以上,使精度达到最高的最优维数比主成分分析(principal component analysis,PCA)和二维主成分分析2种算法降低了25%以上,同时算法运行效率比PCA与2DPCA算法提升32.4%与8.3%,整体性能比基本LPP算法更为优越,能够适应农作物多维数据的优化处理。研究结果为现代精准农业信息监测过程中的数据处理与分析提供了参考。 展开更多
关键词 优化 数据处理 监测 生长特征 特征优化 局部保持投影 主成分分析
下载PDF
面向酉子空间的二维判别保局投影的人脸识别 被引量:1
8
作者 曹孝斌 廖海斌 李原 《计算机应用研究》 CSCD 北大核心 2011年第9期3569-3571,3575,共4页
保局投影算法(LPP)在人脸识别中具有较好的识别性能,但它是一种非监督学习,并且在具体实现时需要把图像转换为向量,破坏了图像的像素结构,这显然不利于模式识别。针对这些问题,提出基于酉子空间的二维判别保局算法,不仅在判别保局算法... 保局投影算法(LPP)在人脸识别中具有较好的识别性能,但它是一种非监督学习,并且在具体实现时需要把图像转换为向量,破坏了图像的像素结构,这显然不利于模式识别。针对这些问题,提出基于酉子空间的二维判别保局算法,不仅在判别保局算法的基础上增加了类别信息,而且直接在灰度矩阵上进行水平和垂直方向上的二维保局投影。该方法构造酉空间上的复向量后再运用线性判别分析提取特征。在ORL、Yale和XJTU人脸库中验证了算法的正确性和有效性,其识别率比传统的2DLDA和2DLPP等方法提高4~5个百分点。 展开更多
关键词 人脸识别 局部保持投影 判别保局投影 酉子空间
下载PDF
融合双向2DLDA和局部SVD的人脸识别 被引量:3
9
作者 刘霄 张建明 《计算机工程》 CAS CSCD 北大核心 2009年第17期181-183,186,共4页
针对人脸识别中光照、表情、姿态的影响,提出一种融合双向二维线性鉴别分析和局部对称平均的人脸识别新方法。通过双向二维线性鉴别分析对整幅图像进行特征提取,利用局部奇异值分解对称平均提取图像的局部特征。对2种方法提取到的特征... 针对人脸识别中光照、表情、姿态的影响,提出一种融合双向二维线性鉴别分析和局部对称平均的人脸识别新方法。通过双向二维线性鉴别分析对整幅图像进行特征提取,利用局部奇异值分解对称平均提取图像的局部特征。对2种方法提取到的特征利用基于加权欧式距离的最近邻分类器进行融合识别,在ORL人脸库上的实验结果证明了该方法的有效性。 展开更多
关键词 双向线性鉴别分析 局部奇异值分解 特征融合 加权欧氏距离 人脸识别
下载PDF
基于局部保持判别子空间的ISAR目标识别 被引量:1
10
作者 蔡洪 何强 +1 位作者 韩壮志 尚朝轩 《中国电子科学研究院学报》 2009年第6期656-660,共5页
由于目标运动及其所处环境的复杂性,雷达目标数据之间往往呈现出局部的非线性,如果采用传统的线性子空间方法降维,必将会使雷达目标识别性能有所下降,基于以上原因,文章尝试将流形学习的思想应用于逆合成孔径雷达(ISAR,inverse syntheti... 由于目标运动及其所处环境的复杂性,雷达目标数据之间往往呈现出局部的非线性,如果采用传统的线性子空间方法降维,必将会使雷达目标识别性能有所下降,基于以上原因,文章尝试将流形学习的思想应用于逆合成孔径雷达(ISAR,inverse synthetic aperture radar)目标二维像的目标识别。局部保持投影(LPP,locality preserving projections)是一类有效的流形学习算法,但它在构建权矩阵时没有充分利用样本的类别信息。针对此问题,提出了一种称为局部保持判别投影(LPDP,locality preserving discriminant projections)的子空间学习方法,该方法通过构建类内和类间两个权矩阵来描述多类样本数据集的局部几何结构,以使在高维空间中相互靠近的同类数据点在低维嵌入空间中也相互靠近,而不同类的近邻点则尽可能地远离。对三类飞机目标的仿真实验结果表明,与PCA、LDA和LPP等算法相比,LPDP算法具有更好的识别性能。 展开更多
关键词 流形学习 局部保持投影 ISAR 目标识别
下载PDF
流形降维最小二乘回归子空间分割
11
作者 林智鹏 黄増裕 简彩仁 《信息技术与网络安全》 2018年第3期88-90,95,共4页
子空间分割方法一直是一种重要的机器学习方法,这些方法在人脸识别和基因表达数据识别等研究中有较好的聚类准确率。然而,这些方法在对高维小样本数据进行聚类时难以取得理想的结果。为了解决这些问题,借鉴流形降维中的局部保持投影法... 子空间分割方法一直是一种重要的机器学习方法,这些方法在人脸识别和基因表达数据识别等研究中有较好的聚类准确率。然而,这些方法在对高维小样本数据进行聚类时难以取得理想的结果。为了解决这些问题,借鉴流形降维中的局部保持投影法和最小二乘回归子空间分割法,提出流形降维最小二乘回归子空间分割法。该方法通过局部保持投影进行降维,再利用最小二乘回归子空间分割方法实现聚类。在6个生物基因表达数据集和2个图像数据集上的实验表明了该方法的有效性。 展开更多
关键词 最小乘回归子空间分割 局部保持投影 小样本
下载PDF
结合优化MGFR与二维线性降维的特征提取算法
12
作者 王利龙 吴斌 《自动化仪表》 CAS 2020年第3期62-67,共6页
受限于人脸姿态、光照变化等因素,通过引入多通道Gaborface表征结合基于子空间的二维双向线性降维算法,提出了一种结合优化多通道Gaborface与二维线性降维的特征提取算法。首先,采用多通道Gaborface表征(MGFR)模型对样本集进行预处理,... 受限于人脸姿态、光照变化等因素,通过引入多通道Gaborface表征结合基于子空间的二维双向线性降维算法,提出了一种结合优化多通道Gaborface与二维线性降维的特征提取算法。首先,采用多通道Gaborface表征(MGFR)模型对样本集进行预处理,提取不同通道下的人脸Gabor特征表示并优化选取通道融合方式而组合成新特征;再引入样本间类别信息获得改进线性二维双向特征降维算法,从而对获得的人脸表示进行特征降维与提取;最终通过最近邻分类器得到分类结果。试验结果表明,通过在AR、ORL和YALE人脸库进行对比分析,改进算法对人脸姿态等变化具有较强的鲁棒性,且较其他算法表现出了较优的识别性能。 展开更多
关键词 线性降算法 多通道Gaborface表征模型 特征提取 最近邻分类 GABOR特征 主成分分析 局部保持投影 人脸识别
下载PDF
基于KLPP-K-means-BiLSTM的台区短期电力负荷预测
13
作者 朱江 汪帆 +2 位作者 曹春堂 易灵芝 邹嘉乐 《电机与控制应用》 2024年第3期108-115,I0001,共9页
随着智能电网的发展,各场景的用电更加多元化,而准确的台区负荷预测是确保相关电力部门制定合适检修任务的关键,同时为有序用电、电网经济运行提供重要参考。为了挖掘台区负荷的特征以提高台区负荷预测的精度,提出了一种基于核主元分析... 随着智能电网的发展,各场景的用电更加多元化,而准确的台区负荷预测是确保相关电力部门制定合适检修任务的关键,同时为有序用电、电网经济运行提供重要参考。为了挖掘台区负荷的特征以提高台区负荷预测的精度,提出了一种基于核主元分析与局部保持投影降维、K均值聚类算法(K-means)以及双向长短时记忆网络(BiLSTM)的台区电力负荷预测方法。首先利用核局部保持投影(KLPP)对台区多特征负荷数据进行降维以提取主要特征信息;然后采取K-means聚类算法将相似特征的数据归类成各自的簇集;最后针对聚类后的各典型类型,有针对性地训练BiLSTM,并选取中国某高校低压台区负荷作为算例与其他经典预测方法进行对比分析,结果表明所提方法更拟合实际负荷走向,有效提升了预测效果。 展开更多
关键词 电力负荷预测 K均值聚类算法 双向长短时记忆网络 局部保持投影
下载PDF
加权空-谱局部保持投影的高分二号影像分类方法
14
作者 何晓琳 《勘察科学技术》 2022年第1期19-22,共4页
针对高分二号遥感影像分类精度低的问题,该文提出了一种基于加权空-谱局部保持投影的高分二号遥感影像分类方法。该方法首先采用加权空-谱算法对高分二号遥感影像进行几何空间重构处理,获取新的影像数据;然后利用融合LPNPE方法与LPP方... 针对高分二号遥感影像分类精度低的问题,该文提出了一种基于加权空-谱局部保持投影的高分二号遥感影像分类方法。该方法首先采用加权空-谱算法对高分二号遥感影像进行几何空间重构处理,获取新的影像数据;然后利用融合LPNPE方法与LPP方法构建新的投影矩阵,充分利用了样本数据光谱类别信息又兼顾局部相邻空间的几何相互关系;最后,将投影后的数据作为SVM分类器的输入,对高分二号遥感影像进行分类。实验结果表明,该方法分类精度为97.47%,Kappa系数为0.9753,能有效识别地物边界。 展开更多
关键词 空间几何特征 光谱特征 加权空-谱局部保持投影 高分号影像分类
原文传递
一种双向2DLPP算法及其在人脸识别中的应用 被引量:1
15
作者 靳丽丽 陈秀宏 《计算机工程与科学》 CSCD 北大核心 2010年第9期50-52,64,共4页
为了提高人脸识别方法对光照、姿态等外部因素的鲁棒性,本文在二维局部保持投影(2DLPP)算法的基础上进行改进,提出的一种双向2DLPP算法。与2DLPP算法不同的是,在求得行方向投影矩阵后,再求列方向的投影矩阵,得到图像的双向特征矩阵,以... 为了提高人脸识别方法对光照、姿态等外部因素的鲁棒性,本文在二维局部保持投影(2DLPP)算法的基础上进行改进,提出的一种双向2DLPP算法。与2DLPP算法不同的是,在求得行方向投影矩阵后,再求列方向的投影矩阵,得到图像的双向特征矩阵,以达到将样本降维的目的。实验结果表明,该方法具有较高的识别率对光照和姿态的变化具有一定的鲁棒性。 展开更多
关键词 人脸识别 子空间 双向局部保持投影 线性判别分析
下载PDF
基于非线性流形学习的ISAR目标识别研究 被引量:16
16
作者 何强 蔡洪 +1 位作者 韩壮志 尚朝轩 《电子学报》 EI CAS CSCD 北大核心 2010年第3期585-590,共6页
详细分析了逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)二维像的非线性流形结构特点,指出ISAR二维像可以看作是由位置、姿态和尺度等内在参数共同作用而张成的一个在高维图像空间中的非线性流形.在此基础上,论文将非线性流... 详细分析了逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)二维像的非线性流形结构特点,指出ISAR二维像可以看作是由位置、姿态和尺度等内在参数共同作用而张成的一个在高维图像空间中的非线性流形.在此基础上,论文将非线性流形学习的思想引入到ISAR目标识别领域,提出了一种基于局部保持投影(Locality Preserving Projections,LPP)算法和k近邻分类器的ISAR二维像特征提取和目标识别方法.该方法首先利用LPP算法对维数较高的ISAR二维像进行降维,然后采用具有拒识功能的k近邻分类器对四类飞机目标进行了分类识别.仿真实验结果表明,LPP算法能够发现嵌入在高维ISAR图像空间中的低维非线性流形,并且能够利用LPP算法降维后的特征获得较高的识别率. 展开更多
关键词 目标识别 ISAR 非线性流形 局部保持投影
下载PDF
一种结合2DLPP与2DPCA的人脸识别方法 被引量:8
17
作者 齐永锋 火元莲 《西南交通大学学报》 EI CSCD 北大核心 2011年第6期910-916,共7页
为解决二维局部保持投影(2DLPP)需要较多数据表示人脸特征的缺陷,提出了一种新的二维局部保持投影主成分分析方法(2DLPP-PCA).通过对人脸图像在行、列方向同时进行2DLPP和2DPCA投影,2DLPP-PCA不仅能减少保存人脸特征所需要的数据量,而... 为解决二维局部保持投影(2DLPP)需要较多数据表示人脸特征的缺陷,提出了一种新的二维局部保持投影主成分分析方法(2DLPP-PCA).通过对人脸图像在行、列方向同时进行2DLPP和2DPCA投影,2DLPP-PCA不仅能减少保存人脸特征所需要的数据量,而且能有效地提取人脸的局部特征和全局特征.在ORL、Yale和CAS-PEAL-R1人脸数据库上的实验结果表明,2DLPP-PCA是一种高性能的特征提取方法,当训练样本数为6时,2DLPP-PCA在ORL数据库上的最佳平均识别率达到99%以上. 展开更多
关键词 局部保持投影(2DLPP) 主成分分析(2DPCA) 特征提取 人脸识别
下载PDF
2DPCA+2DLDA和改进的LPP相结合的人脸识别算法 被引量:8
18
作者 李球球 杨恢先 +2 位作者 奉俊鹏 蔡勇勇 翟云龙 《计算机工程与应用》 CSCD 北大核心 2015年第21期199-204,共6页
针对局部保持投影(LPP)算法无监督且只保留局部信息的特性,提出一种2DPCA+2DLDA和改进的LPP相结合的人脸识别算法。将训练集样本用2DPCA+2DLDA算法进行投影,保留数据整体空间信息和分类信息;引入类内、类间信息对LPP算法的关系矩阵进行... 针对局部保持投影(LPP)算法无监督且只保留局部信息的特性,提出一种2DPCA+2DLDA和改进的LPP相结合的人脸识别算法。将训练集样本用2DPCA+2DLDA算法进行投影,保留数据整体空间信息和分类信息;引入类内、类间信息对LPP算法的关系矩阵进行优化,使LPP成为有监督的非线性学习方法,采用改进的LPP(ILPP)算法对训练集图像进行二次投影,提取样本的局部流形信息,并作为人脸识别信息进行鉴别。在Yale和ORL人脸库的测试结果验证了该方法的有效性。 展开更多
关键词 人脸识别 主成分分析+线性判别分析(2DPCA+2DLDA) 局部保持投影(LPP) 改进的局部保持 影(1LPP) 局部流形信息
下载PDF
基于改进2D-DLPP算法的人脸识别 被引量:2
19
作者 马家军 《商洛学院学报》 2014年第6期23-27,共5页
在二维局部保持投影中引入类间结构信息和类标签,得到有监督的二维判别局部保持投影算法,从而提高了特征集的鉴别性。针对算法中参数的选取问题,建立无参数权重矩阵,提出无参数的二维判别局部保持投影(无参数2D-DLPP)算法。在Yale和ORL... 在二维局部保持投影中引入类间结构信息和类标签,得到有监督的二维判别局部保持投影算法,从而提高了特征集的鉴别性。针对算法中参数的选取问题,建立无参数权重矩阵,提出无参数的二维判别局部保持投影(无参数2D-DLPP)算法。在Yale和ORL人脸库上的仿真实验结果表明,该算法与二维判别局部保持投影(2D-DLPP)、二维局部保持投影法(2D-LPP)和二维线性判别分析法(2D-LDA)相比能够取得更高的识别率。 展开更多
关键词 人脸识别 特征提取 判别局部保持投影 无参数
下载PDF
2DFLD与LPP相结合的人脸和表情识别方法 被引量:10
20
作者 朱明旱 罗大庸 《模式识别与人工智能》 EI CSCD 北大核心 2009年第1期60-63,共4页
提出一种二维Fisher线性判别分析(2DFLD)与局部保持投影(LPP)相结合的人脸和表情识别方法.首先,将训练集图像用2DFLD投影,使其按身份分离.然后,用LPP进行二次投影提取出它的表情流形.最后,给出概率度量,得到待测图像属于各类身份和表情... 提出一种二维Fisher线性判别分析(2DFLD)与局部保持投影(LPP)相结合的人脸和表情识别方法.首先,将训练集图像用2DFLD投影,使其按身份分离.然后,用LPP进行二次投影提取出它的表情流形.最后,给出概率度量,得到待测图像属于各类身份和表情的概率,从而识别出它的人脸和表情的类别.在CMU-AMP和JAFFE人脸库上的实验表明,该方法简便有效、识别效果好. 展开更多
关键词 Fisher线性判别分析(2DFLD) 局部保持投影(LPP) 表情流形 人脸识别 表情识别
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部