期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于路径聚合扩张卷积的图像语义分割方法
被引量:
4
1
作者
李叔敖
解庆
+1 位作者
马艳春
刘永坚
《计算机工程与科学》
CSCD
北大核心
2021年第4期712-720,共9页
基于编码器-解码器的深度全卷积神经网络在图像语义分割中取得了重大的进展,但是深度网络中网络低层定位信息传播到网络高层路径过长,导致解码阶段难以利用低层定位信息来恢复物体边界结构,针对这一问题,提出了一种应用在分割网络解码...
基于编码器-解码器的深度全卷积神经网络在图像语义分割中取得了重大的进展,但是深度网络中网络低层定位信息传播到网络高层路径过长,导致解码阶段难以利用低层定位信息来恢复物体边界结构,针对这一问题,提出了一种应用在分割网络解码器部分的路径聚合结构。该结构缩短了分割网络中低层信息到高层信息的传播路径并提供多尺度的上下文语义信息,使得分割网络能产生更为精细的边界分割结果。针对语义分割中常使用的Softmax交叉熵损失函数对外观相似样本区分能力不足的问题,对Softmax交叉熵损失函数进行改造,提出了双向交叉熵损失函数。本文提出的路径聚合扩张卷积网络结合新的损失函数方法在PASCAL VOC2012Aug数据集上获得了更好的效果,将mIoU值从78.77%提升到了80.44%。
展开更多
关键词
图像语义分割
双向交叉熵
路径聚合结构
多尺度预测
深度学习
下载PDF
职称材料
题名
基于路径聚合扩张卷积的图像语义分割方法
被引量:
4
1
作者
李叔敖
解庆
马艳春
刘永坚
机构
武汉理工大学计算机科学与技术学院
出处
《计算机工程与科学》
CSCD
北大核心
2021年第4期712-720,共9页
基金
国家自然科学基金(61602353)。
文摘
基于编码器-解码器的深度全卷积神经网络在图像语义分割中取得了重大的进展,但是深度网络中网络低层定位信息传播到网络高层路径过长,导致解码阶段难以利用低层定位信息来恢复物体边界结构,针对这一问题,提出了一种应用在分割网络解码器部分的路径聚合结构。该结构缩短了分割网络中低层信息到高层信息的传播路径并提供多尺度的上下文语义信息,使得分割网络能产生更为精细的边界分割结果。针对语义分割中常使用的Softmax交叉熵损失函数对外观相似样本区分能力不足的问题,对Softmax交叉熵损失函数进行改造,提出了双向交叉熵损失函数。本文提出的路径聚合扩张卷积网络结合新的损失函数方法在PASCAL VOC2012Aug数据集上获得了更好的效果,将mIoU值从78.77%提升到了80.44%。
关键词
图像语义分割
双向交叉熵
路径聚合结构
多尺度预测
深度学习
Keywords
semantic image segmentation
bidirectional cross-entropy
path aggregation structure
multi-scale prediction
deep learning
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于路径聚合扩张卷积的图像语义分割方法
李叔敖
解庆
马艳春
刘永坚
《计算机工程与科学》
CSCD
北大核心
2021
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部