期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
服装定制新量具——中分双向(及可折叠式)人体量体软尺
1
作者 田顺发 田源 《服装设计师》 2024年第5期93-97,共5页
本文介绍了服装定制领域量体新量具,即中分双向人体量体软尺,也着重介绍了该量具的具体使用方法。它可以精准测量出服装制板时所需用到的人体各部位的数据,让普通量体制板师也可以用客户人体数据制板,极大地弥补了定制行业在过去所存在... 本文介绍了服装定制领域量体新量具,即中分双向人体量体软尺,也着重介绍了该量具的具体使用方法。它可以精准测量出服装制板时所需用到的人体各部位的数据,让普通量体制板师也可以用客户人体数据制板,极大地弥补了定制行业在过去所存在的诸多缺陷,使服装定制能够真正做到一人一板。 展开更多
关键词 服装 私人定制 双向尺 量体制版
下载PDF
优化坯料配置 提高中厚板轧制倍尺率
2
作者 李善磊 侯家珺 黄玉霞 《山东冶金》 CAS 2004年第S1期54-55,共2页
分析了坯料优化的原则,通过合理选择切边量、确定目标厚度选定双向定尺板料型,提出了可能的坯料组织方式,并分析了生产计划的优化和提高厚度30mm以上规格的轧制命中率。
关键词 坯料优化 双向 生产计划
下载PDF
Infrasound Event Classification Fusion Model Based on Multiscale SE-CNN and BiLSTM
3
作者 Hongru Li Xihai Li +3 位作者 Xiaofeng Tan Chao Niu Jihao Liu Tianyou Liu 《Applied Geophysics》 SCIE CSCD 2024年第3期579-592,620,共15页
The classification of infrasound events has considerable importance in improving the capability to identify the types of natural disasters.The traditional infrasound classification mainly relies on machine learning al... The classification of infrasound events has considerable importance in improving the capability to identify the types of natural disasters.The traditional infrasound classification mainly relies on machine learning algorithms after artificial feature extraction.However,guaranteeing the effectiveness of the extracted features is difficult.The current trend focuses on using a convolution neural network to automatically extract features for classification.This method can be used to extract signal spatial features automatically through a convolution kernel;however,infrasound signals contain not only spatial information but also temporal information when used as a time series.These extracted temporal features are also crucial.If only a convolution neural network is used,then the time dependence of the infrasound sequence will be missed.Using long short-term memory networks can compensate for the missing time-series features but induces spatial feature information loss of the infrasound signal.A multiscale squeeze excitation–convolution neural network–bidirectional long short-term memory network infrasound event classification fusion model is proposed in this study to address these problems.This model automatically extracted temporal and spatial features,adaptively selected features,and also realized the fusion of the two types of features.Experimental results showed that the classification accuracy of the model was more than 98%,thus verifying the effectiveness and superiority of the proposed model. 展开更多
关键词 infrasound classification channel attention convolution neural network bidirectional long short-term memory network multiscale feature fusion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部