期刊文献+
共找到60篇文章
< 1 2 3 >
每页显示 20 50 100
基于卷积块注意力模块和双向特征金字塔网络的接触网支持装置检测方法研究 被引量:2
1
作者 冯新伟 黄宇祥 王忠立 《铁道技术监督》 2023年第4期16-24,共9页
接触网支持装置是接触网悬挂状态检测监测图像分析的关键对象,对支持装置零部件的检测定位是实现缺陷自动分析的基础。针对接触网支持装置零部件种类多、尺寸差异大、存在遮挡、部分零部件相似度高等问题,提出一种融合卷积块注意力模块(... 接触网支持装置是接触网悬挂状态检测监测图像分析的关键对象,对支持装置零部件的检测定位是实现缺陷自动分析的基础。针对接触网支持装置零部件种类多、尺寸差异大、存在遮挡、部分零部件相似度高等问题,提出一种融合卷积块注意力模块(convolutional block attention module,CBAM)和双向特征金字塔网络(bidirectional feature pyramid network,BiFPN)的接触网支持装置检测方法。在YOLO v5s网络模型基础上,该方法通过CBAM增强接触网支持装置的特征提取,结合BiFPN,实现不同零部件分辨率特征图的融合。利用4C装置获得的图像数据集,开展验证试验。试验结果表明,相对YOLO v5s网络模型,融合CBAM和BiFPN的接触网支持装置检测方法,网络平均精度mAP@0.5提高2.12%;能显著提升小目标检测效果,提高定位的准确性和稳定性,对接触网状态的智能分析有重要意义。 展开更多
关键词 接触网 支持装置 检测方法 卷积块注意力模块 双向特征金字塔网络
下载PDF
具有双向增强特征结构的U型肺结节分割网络 被引量:4
2
作者 黄新 郭晓敏 《计算机工程与应用》 CSCD 北大核心 2022年第24期239-246,共8页
在CT影像中精准而有效地分割出肺部结节是肺癌早期诊断的关键。然而,肺结节形态的多样性以及周围环境的复杂性,都给肺结节分割的鲁棒性带来了巨大的挑战。为提高CT影像中肺结节分割的准确性,提出了Bi EFP-UNet(bidirectional enhanced f... 在CT影像中精准而有效地分割出肺部结节是肺癌早期诊断的关键。然而,肺结节形态的多样性以及周围环境的复杂性,都给肺结节分割的鲁棒性带来了巨大的挑战。为提高CT影像中肺结节分割的准确性,提出了Bi EFP-UNet(bidirectional enhanced feature pyramid UNet)肺结节分割网络。该结构采用端到端的深度学习方法来解决肺结节的分割任务,通过在原始U-Net网络的编码器和解码器结构之间集成一个双向增强型特征金字塔网络(bidirectional enhanced feature pyramid network,Bi EFPN),加强网络对特征的传递与利用;利用Mish激活函数提高分割效率,并消除原始U-Net网络梯度消失的问题。在肺结节公开数据集LUNA16上的实验结果表明,Bi EFP-UNet网络的Dice相似系数(DSC)可达88.32%,其中,Bi EFPN结构带来的提升为5.25个百分点,Mish激活函数带来的提升为1.21个百分点;与原始U-Net网络相比,Bi EFP-UNet网络的DSC提升了6.46个百分点,能有效解决原始U-Net网络对小目标结节分割性能差、梯度消失的问题。 展开更多
关键词 CT 肺结节分割 U-Net Bi EFP-UNet 双向增强型特征金字塔网络 Mish
下载PDF
基于YOLOv5s和超声图像的儿童肠套叠特征检测模型
3
作者 陈星 俞凯 +2 位作者 袁贞明 黄坚 李哲明 《杭州师范大学学报(自然科学版)》 CAS 2024年第1期10-19,共10页
为帮助医生快速寻找到儿童腹部超声中肠套叠的病变特征并实现肠套叠超声诊后数据的快速质检,文章将目标检测算法应用于儿童腹部超声图像检测肠套叠“同心圆”征.首先探索了基于YOLOv5s的儿童肠套叠检测模型,发现该模型检测肠套叠“同心... 为帮助医生快速寻找到儿童腹部超声中肠套叠的病变特征并实现肠套叠超声诊后数据的快速质检,文章将目标检测算法应用于儿童腹部超声图像检测肠套叠“同心圆”征.首先探索了基于YOLOv5s的儿童肠套叠检测模型,发现该模型检测肠套叠“同心圆”征的精确度、召回率、F 1分数、mAP@0.5、FPS以及参数量等方面均优于Faster RCNN.进一步,为解决肉眼难以观察的“同心圆”征的检测问题,使用双向特征金字塔网络,并将注意力机制加入YOLOv5s网络,形成基于YOLOv5s_BiFPN_SE框架的儿童肠套叠“同心圆”征检测模型.该模型检测的精确率、召回率、F 1分数、mAP@0.5分别达到了91.33%、90.73%、91.03%、88.77%,性能更优于YOLOv5s. 展开更多
关键词 目标检测 肠套叠 超声图像 “同心圆”征 双向特征金字塔网络 注意力机制
下载PDF
基于改进3D U-Net模型的肺结节分割方法研究
4
作者 石征锦 李文慧 高天 《现代信息科技》 2024年第13期52-55,60,共5页
由于肺部CT图像的特征信息复杂度较高,经典3D U-Net网络在肺结节分割方面准确率较低,存在误分割等问题。基于此,提出一种基于改进3D U-Net的网络模型。通过将加入了密集块的3D U-Net网络和双向特征网络(Bi-FPN)融合,提高了模型分割精度... 由于肺部CT图像的特征信息复杂度较高,经典3D U-Net网络在肺结节分割方面准确率较低,存在误分割等问题。基于此,提出一种基于改进3D U-Net的网络模型。通过将加入了密集块的3D U-Net网络和双向特征网络(Bi-FPN)融合,提高了模型分割精度。同时采用深度监督训练机制,进一步提高了网络性能。在公开数据集LUNA-16上对模型进行比较实验和评估,结果显示,改进后的3D U-Net网络,Dice相似系数较原模型提高4%,分割精度为93.9%,敏感度为94.3%,证明该模型在肺结节分割精度及准确率方面具有一定的应用价值。 展开更多
关键词 肺结节分割 CT 3D U-Net 双向特征网络 深度监督
下载PDF
基于改进YOLOv5的安全帽检测算法 被引量:2
5
作者 侯公羽 陈钦煌 +3 位作者 杨振华 张又文 张丹阳 李昊翔 《工程科学学报》 EI CSCD 北大核心 2024年第2期329-342,共14页
为了解决建筑工地、隧道、煤矿等施工场景中现有安全帽检测算法对于小目标、密集目标以及复杂环境下的检测精度低的问题,设计实现了一种基于YOLOv5的改进目标检测算法,记为YOLOv5-GBCW.首先使用Ghost卷积对骨干网络进行重构,使得模型的... 为了解决建筑工地、隧道、煤矿等施工场景中现有安全帽检测算法对于小目标、密集目标以及复杂环境下的检测精度低的问题,设计实现了一种基于YOLOv5的改进目标检测算法,记为YOLOv5-GBCW.首先使用Ghost卷积对骨干网络进行重构,使得模型的复杂度有了显著降低;其次使用双向特征金字塔网络(BiFPN)加强特征融合,使得算法对小目标准确率提升;引入坐标注意力(Coordinate attention)模块,能够将注意力资源分配给关键区域,从而在复杂环境中降低背景的干扰;最后提出了Beta-WIoU作为边框损失函数,采用动态非单调聚焦机制并引入对锚框特征的计算,提升预测框的准确率,同时加速模型收敛.为了验证算法的可行性,以课题组收集的安全帽数据集为基础,选用了多种经典算法进行对比,并且进行了消融实验,探究各个改进模块的提升效果.实验结果表明:改进算法YOLOv5-GBCW相较于YOLOv5s算法,算法平均精确率(IOU=0.5)提升了5.8%,达到了94.5%,检测速度达到了124.6 FPS(每秒处理帧数),模型更加轻量化,在复杂环境、密集场景和小目标场景下检测能力提升显著,并且同时满足安全帽检测精度和实时性的要求,给复杂施工环境下安全帽检测提供了一种新的方法. 展开更多
关键词 安全帽 目标检测 YOLOv5 注意力机制 双向特征金字塔网络
下载PDF
结合主动光源和改进YOLOv5s模型的夜间柑橘检测方法 被引量:1
6
作者 熊俊涛 霍钊威 +4 位作者 黄启寅 陈浩然 杨振刚 黄煜华 苏颖苗 《华南农业大学学报》 CAS CSCD 北大核心 2024年第1期97-107,共11页
【目的】解决夜间环境下遮挡和较小柑橘难以准确识别的问题,实现采摘机器人全天候智能化作业。【方法】提出一种结合主动光源的夜间柑橘识别方法。首先,通过分析主动光源下颜色特征不同的夜间柑橘图像,选择最佳的光源色并进行图像采集... 【目的】解决夜间环境下遮挡和较小柑橘难以准确识别的问题,实现采摘机器人全天候智能化作业。【方法】提出一种结合主动光源的夜间柑橘识别方法。首先,通过分析主动光源下颜色特征不同的夜间柑橘图像,选择最佳的光源色并进行图像采集。然后,提出一种夜间柑橘检测模型BI-YOLOv5s,该模型采用双向特征金字塔网络(Bi-FPN)进行多尺度交叉连接和加权特征融合,提高对遮挡和较小果实的识别能力;引入Coordinate attention(CA)注意力机制模块,进一步加强对目标位置信息的提取;采用融入Transformer结构的C3TR模块,在减少计算量的同时更好地提取全局信息。【结果】本文提出的BI-YOLOv5s模型在测试集上的精准率、召回率、平均准确率分别为93.4%、92.2%和97.1%,相比YOLOv5s模型分别提升了3.2、1.5和2.3个百分点。在所采用的光源色环境下,模型对夜间柑橘识别的正确率为95.3%,相比白光环境下提高了10.4个百分点。【结论】本文提出的方法对夜间环境下遮挡和小目标柑橘的识别具有较高的准确性,可为夜间果蔬智能化采摘的视觉精准识别提供技术支持。 展开更多
关键词 柑橘 夜间检测 主动光源 双向特征金字塔网络 YOLOv5s HSV颜色空间
下载PDF
基于改进YOLOv5s的轻量级绝缘子缺失检测 被引量:1
7
作者 池小波 张伟杰 +1 位作者 贾新春 续泽晋 《测试技术学报》 2024年第1期19-26,共8页
针对现有绝缘子缺失检测模型计算复杂度高和小目标难以检测等问题,提出一种基于改进的YOLOv5s轻量级检测模型。首先,移除主干网络中的C3模块来减少模型的参数量。其次,在多尺度特征融合网络中引入卷积块注意力机制来提高复杂背景下模型... 针对现有绝缘子缺失检测模型计算复杂度高和小目标难以检测等问题,提出一种基于改进的YOLOv5s轻量级检测模型。首先,移除主干网络中的C3模块来减少模型的参数量。其次,在多尺度特征融合网络中引入卷积块注意力机制来提高复杂背景下模型的特征提取能力。同时,采用加权双向特征金字塔网络结构对特征进行双向跨尺度加权融合,提升网络在遮挡物、相似目标干扰下目标的检测性能。最后,选用SIoU损失函数提升网络的收敛速度和检测精度。实验结果表明,所提模型的平均精准率为96.8%,浮点运算数为2.8 GFLOPS,而原始YOLOv5s在保证97.4%的平均精准率下的浮点运算数为16.3 GFLOPS。相较于原始模型,所提模型对小目标、遮挡目标以及模糊等场景有着较强的鲁棒性,且在保证近似检测精度的同时极大减少了计算量。 展开更多
关键词 绝缘子检测 YOLOv5s模型 卷积块注意力机制 加权双向特征金字塔网络 轻量化网络
下载PDF
基于改进YOLOv7模型的血细胞检测分类
8
作者 刘涛 李明 马金刚 《中国医疗设备》 2024年第9期6-13,共8页
目的探讨改进YOLOv7算法在血细胞图像不同类型细胞自动检测分类中的应用,以提高血细胞识别分类的准确度。方法将滑动窗口变换器模块引入YOLOv7,同时采用加权双向特征金字塔网络结构,使网络能够获取并传递更加丰富的特征信息,使用斯库拉... 目的探讨改进YOLOv7算法在血细胞图像不同类型细胞自动检测分类中的应用,以提高血细胞识别分类的准确度。方法将滑动窗口变换器模块引入YOLOv7,同时采用加权双向特征金字塔网络结构,使网络能够获取并传递更加丰富的特征信息,使用斯库拉交并比损失代替完全交并比损失,实现更加精准的目标框定位。结果通过不同算法在BCCD血细胞数据集上展开实验可得,改进的YOLOv7模型对红细胞、白细胞和血小板的识别准确度分别达到89.3%、98.5%和91.5%,平均准确度达93.1%,相比于原YOLOv7模型提升了2.6%。通过与已发表的血细胞人工智能检测算法进行对比可知,本文算法具有更高的准确度。结论改进的YOLOv7模型可以有效应用于血细胞识别分类任务,为血细胞的检测提供重要的参考价值。 展开更多
关键词 血细胞检测 YOLOv7 神经网络 加权双向特征金字塔网络 斯库拉交并比损失函数
下载PDF
基于改进型YOLOX的储粮害虫识别技术研究
9
作者 余建国 丁元昊 +1 位作者 王雯 靳梦欣 《河南工业大学学报(自然科学版)》 CAS 北大核心 2024年第4期117-125,共9页
为平衡储粮害虫图像检测中的速度与精度以获得二者最优结合的目标检测模型,提出并实现了一种基于改进YOLOX网络模型的储粮害虫检测方法。通过引入一种新的GSConv替换标准卷积以减少计算量,结合引入的Res-CBAM注意力机制,提升模型的特征... 为平衡储粮害虫图像检测中的速度与精度以获得二者最优结合的目标检测模型,提出并实现了一种基于改进YOLOX网络模型的储粮害虫检测方法。通过引入一种新的GSConv替换标准卷积以减少计算量,结合引入的Res-CBAM注意力机制,提升模型的特征提取能力;引入SiLU激活函数提升模型训练效率;引入双向特征金字塔网络(BiFPN)改善特征融合效果;改进损失函数提高目标框回归稳定性;使用非极大值抑制解决冗余框过剩的问题。试验结果表明:改进后的YOLOX模型计算量减少了31%;检测速度提高了18%,最高可达60 FPS;检测精度提高了6.14百分点,最高可达97.05%。改进的YOLOX模型结合了一阶段算法和二阶段算法的优点,在储粮害虫的智能识别中取得了明显的效果。 展开更多
关键词 储粮害虫 YOLOX Res-CBAM GSConv 双向特征金字塔网络
下载PDF
改进YOLOv5s的钢轨表面缺陷检测算法
10
作者 李军 许炫皓 王耀弘 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第8期130-137,共8页
针对钢轨多类别缺陷识别任务中样本不平衡、尺度差异大,提出一种改进YOLOv5s的钢轨表面缺陷检测算法。在骨干网络中嵌入全局注意力机制,增强网络对缺陷特征的提取能力;构建加权双向特征融合网络,减少缺陷目标特征信息的丢失;在颈部采用... 针对钢轨多类别缺陷识别任务中样本不平衡、尺度差异大,提出一种改进YOLOv5s的钢轨表面缺陷检测算法。在骨干网络中嵌入全局注意力机制,增强网络对缺陷特征的提取能力;构建加权双向特征融合网络,减少缺陷目标特征信息的丢失;在颈部采用改进的卷积结构,降低模型复杂度,同时提升检测精度;最后引入WIoU损失函数提升低质量样本预测能力。该方法在2种不同类别的数据集中都具有较好的表现,在RailDefect公共数据集上,其平均精度均值(mAP)达到91.2%,较YOLOv5s网络提高了3.6%,准确率(precision)和召回率(recall)分别提高了3.3%和3.9%。该算法在保证较高检测精度的同时降低了模型复杂度,更适合部署于算力有限的移动端轨道检测设备中,具有一定的实用价值。 展开更多
关键词 钢轨多类别缺陷 YOLOv5s 注意力机制 加权双向特征融合网络 损失函数
下载PDF
基于改进YOLOv5算法的接触网绝缘子定位方法
11
作者 刘仕兵 周诗涵 但业光 《华东交通大学学报》 2024年第1期105-112,共8页
【目的】针对高速铁路接触网绝缘子在复杂背景下检测效率不高的问题提出一种检测算法。【方法】首先对样本数据集进行大规模扩充,在原有YOLOv5s算法的基础上,为有效的提升模型的表征力,增加ECA注意力机制,进行无降维的跨信道方式来聚焦... 【目的】针对高速铁路接触网绝缘子在复杂背景下检测效率不高的问题提出一种检测算法。【方法】首先对样本数据集进行大规模扩充,在原有YOLOv5s算法的基础上,为有效的提升模型的表征力,增加ECA注意力机制,进行无降维的跨信道方式来聚焦绝缘子位置信息;使用BiFPN特征金字塔网络,进行多尺度的特征融合来丰富语义信息;选用Meta-ACON自适应控制激活函数,在函数允许的最大范围内,严格把控函数的上下限,防止模型出现失控现象;将原有GIOU损失函数更换为EIOU损失函数,从梯度的角度对锚框进行更深一步的划分,进而提升网络的收敛速度。【结果】实验结果表明,通过对YOLOv5s改进后的检测算法,可以对绝缘子进行更精确的定位与识别,准确率达到了99.4%。【结论】所提出的检测算法为绝缘子定位检测提供了更加准确快捷的方法。 展开更多
关键词 绝缘子 风格迁移 YOLOv5s 注意力机制 双向融合特征网络
下载PDF
基于改进YOLOv8的道路缺陷检测
12
作者 李昊璇 苏艳琼 《测试技术学报》 2024年第5期506-512,共7页
针对道路缺陷小目标在复杂背景下检测精度低、漏检误检率高、泛化能力欠佳的问题,提出了一种改进YOLOv8的道路缺陷检测算法SGBNet。首先,Neck部分用加权双向特征金字塔网络(Bi-directional Feature Pyramid Network, BiFPN)替换PANet,... 针对道路缺陷小目标在复杂背景下检测精度低、漏检误检率高、泛化能力欠佳的问题,提出了一种改进YOLOv8的道路缺陷检测算法SGBNet。首先,Neck部分用加权双向特征金字塔网络(Bi-directional Feature Pyramid Network, BiFPN)替换PANet,提升模型的特征融合能力;其次,Neck引入全局注意力机制(Global Attention Machanism, GAM),在特征融合阶段进行注意力调整,提高检测精度;最后,添加小目标检测层,进一步增强深层语义信息与浅层语义信息的结合,提高对道路缺陷小目标的检测能力。与原始YOLOv8n算法相比,算法SGBNet的精确率、召回率和平均精度分别提升了3.3%, 2.5%和2.5%,实现了对道路缺陷更精准的检测。 展开更多
关键词 道路缺陷检测 双向特征金字塔网络(BiFPN) 全局注意力机制(GAM) 小目标检测层
下载PDF
基于改进YOLOv5s的田间移动障碍物检测 被引量:1
13
作者 侯艳林 艾尔肯·亥木都拉 李贺南 《现代电子技术》 北大核心 2024年第6期171-178,共8页
为实现无人农机在行驶过程中对田间移动型障碍物的实时检测,提出一种基于YOLOv5s的目标检测模型,用于检测田间行人和其他协同作业的农机设备。该目标检测模型以YOLOv5s模型为基础框架,进行了以下三点改进:第一,为了减少模型的参数量和... 为实现无人农机在行驶过程中对田间移动型障碍物的实时检测,提出一种基于YOLOv5s的目标检测模型,用于检测田间行人和其他协同作业的农机设备。该目标检测模型以YOLOv5s模型为基础框架,进行了以下三点改进:第一,为了减少模型的参数量和计算复杂度,提高推理速度,将YOLOv5s网络模型中的卷积模块和C3模块替换为Ghost卷积和C3Ghost模块;第二,为了弥补模型参数量减少所造成的精度下降的损失,提升对目标的检测能力,在主干网络输出的特征层中引入CBAM注意力机制;第三,采用BiFPN特征金字塔结构,实现多尺度特征加权融合。实验结果表明,YOLOv5s模型的参数量为7.02×106,计算复杂度为15.8GB,平均检测精度为94%,生成权重文件大小为13.7MB,单幅图像的检测速度为71.43 f/s;改进后的模型参数量为4.04×106,下降了42.45%,计算复杂度缩减为8.5 GB,平均检测精度达到了93.2%,仅仅下降了0.8%,权重文件大小为8.1 MB,单幅图像的检测速度为77.52 f/s。以上数据证明,改进后的模型能够满足对田间移动型障碍物的实时检测,且更加易于部署到移动端设备。 展开更多
关键词 移动型障碍物 YOLOv5s 无人农机 目标检测 CBAM注意力机制 双向特征金字塔网络(BiFPN)
下载PDF
面向拥挤行人检测的改进YOLOv7算法 被引量:1
14
作者 徐芳芯 樊嵘 马小陆 《计算机工程》 CAS CSCD 北大核心 2024年第3期250-258,共9页
针对拥挤行人检测场景下检测算法容易产生漏检与误检的问题,提出一种改进的YOLOv7拥挤行人检测算法。在骨干网络中引入BiFormer视觉变换器和改进的高效层聚合网络(RC-ELAN)模块,通过自注意力机制与注意力模块使骨干网络更多聚焦于被遮... 针对拥挤行人检测场景下检测算法容易产生漏检与误检的问题,提出一种改进的YOLOv7拥挤行人检测算法。在骨干网络中引入BiFormer视觉变换器和改进的高效层聚合网络(RC-ELAN)模块,通过自注意力机制与注意力模块使骨干网络更多聚焦于被遮挡行人的重要特征,有效缓解了目标特征缺失对检测造成的负面影响。采用基于双向特征金字塔网络思想的改进颈部网络,通过转置卷积和改进的Rep-ELAN-W模块使模型可以高效利用中低维特征图中的小目标特征信息,有效提升了模型的小目标行人检测性能。引入高效的完全交并比损失函数,使模型可以进一步收敛至更高精度。在含有大量小目标遮挡行人的WiderPerson数据集上的实验结果表明,与YOLOv7、YOLOv5、YOLOX算法相比,改进的YOLOv7算法的交并比阈值分别取0.5和0.5~0.95时的平均精准度提升了2.5和2.8、9.9和7.1、12.3和10.7个百分点,可较好地应用于拥挤行人检测场景。 展开更多
关键词 机器视觉 拥挤行人检测 注意力机制 YOLO系列算法 双向特征金字塔网络
下载PDF
面向带钢表面小目标缺陷检测的改进YOLOv7算法 被引量:1
15
作者 樊嵘 马小陆 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第3期303-308,316,共7页
带钢表面小目标缺陷检测是工业质检领域的研究热点。针对热轧带钢表面缺陷检测任务中小目标缺陷易产生漏检的问题,文章提出一种改进的YOLOv7算法。在骨干网络中融入通道空间注意力模块(convolutional block attention module,CBAM)和可... 带钢表面小目标缺陷检测是工业质检领域的研究热点。针对热轧带钢表面缺陷检测任务中小目标缺陷易产生漏检的问题,文章提出一种改进的YOLOv7算法。在骨干网络中融入通道空间注意力模块(convolutional block attention module,CBAM)和可重参数化卷积模块,以提升小目标特征的提取效率;采用改进的双向特征金字塔网络(bi-directional feature pyramid network,BiFPN)颈部网络替换原有的路径聚合网络(path aggregation network,PANet)颈部网络,实现对小目标缺陷特征的高效提纯;采用解耦检测头进行检测结果输出,使网络在训练时进一步收敛至更高精度。实验结果表明,改进后的YOLOv7算法在小目标带钢缺陷检测场景下检测精度领先YOLOv7算法4.3 AP50精度,领先YOLOv6算法5.0 AP50精度,领先YOLOX算法4.8 AP50精度,说明该算法可以较好地应用于小目标带钢缺陷检测。 展开更多
关键词 机器视觉 缺陷检测 YOLOv7算法 双向特征金字塔网络(BiFPN) 注意力机制
下载PDF
基于改进YOLOv5s的鱼雷检测算法
16
作者 崔陈 甘文洋 朱大奇 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第1期35-41,79,共8页
针对目前深海鱼雷检测中存在检测精度低和检测速度慢的问题,提出了一种基于改进YOLOv5s的鱼雷检测算法。使用可分离视觉变换器(SepViT)模块来替换主干层网络最后一层中的C3模块,增强骨干网络与全局信息的联系以及鱼雷特征的提取,降低漏... 针对目前深海鱼雷检测中存在检测精度低和检测速度慢的问题,提出了一种基于改进YOLOv5s的鱼雷检测算法。使用可分离视觉变换器(SepViT)模块来替换主干层网络最后一层中的C3模块,增强骨干网络与全局信息的联系以及鱼雷特征的提取,降低漏检率和误检率。在YOLOv5s网络模型的主干层网络中引入ECA注意力机制,提高复杂的深海环境下检测模型对于鱼雷深层次关键特征的提取能力,同时避免了降维,以有效的方式捕捉跨通道的交互信息,以此来提高鱼雷检测模型的检测精度。将网络模型颈部层中的路径聚合网络(PANet)替换为双向特征金字塔网络(BiFPN),采用跨尺度连接去除路径聚合网络(PANet)中对特征融合贡献较小的节点,实现多尺度特征的快速融合,提高鱼雷检测模型的检测效率。实验结果表明:改进的YOLOv5s鱼雷检测算法的均值平均精度(mAP)达到了97.0%,较原来的YOLOv5s算法提高了3.7%,检测速度达83 FPS,有效地提高了深海鱼雷检测的精度和速度。 展开更多
关键词 鱼雷检测 YOLOv5s 深度学习 可分离视觉变换器 注意力机制 双向特征金字塔网络
下载PDF
基于改进YOLOv5的船舶多尺度SAR图像检测算法
17
作者 李生辉 李晓飞 +1 位作者 宋璋晗 王必祥 《数据采集与处理》 CSCD 北大核心 2024年第1期120-131,共12页
针对复杂场景下合成孔径雷达(Synthetic aperture radar, SAR)图像船舶目标像素尺度差异大和船舶密集排列造成目标漏检的问题,提出一种基于改进YOLOv5的船舶多尺度SAR图像检测算法。对于YOLOv5的颈部网络,采用双向特征金字塔结构(Bi-dir... 针对复杂场景下合成孔径雷达(Synthetic aperture radar, SAR)图像船舶目标像素尺度差异大和船舶密集排列造成目标漏检的问题,提出一种基于改进YOLOv5的船舶多尺度SAR图像检测算法。对于YOLOv5的颈部网络,采用双向特征金字塔结构(Bi-directional feature pyramid network, BiFPN)提升网络多尺度特征融合能力,并在其自下而上的特征融合支路中,基于深度可分离卷积(Depthwise separable convolution, DSC)和通道MLP构建EC-MLP(Enhanced channel-MLP)模块,从而丰富语义信息,提供更充分的船舶目标上下文特征;引入全局注意力机制(Global attention mechanism, GAM),使网络对输入特征进行针对性提取并运算,减少网络的信息丢失;此外,使用SIoU损失函数进一步提高网络的训练收敛速度和检测精度。在SSDD和HRSID数据集上与其他8种方法(Faster R-CNN、Libra R-CNN、FCOS、YOLOv5s、PP-YOLOv2、YOLOX-s、PP-YOLOE-s和YOLOv7-tiny)进行对比实验。实验结果表明:改进后算法在SSDD数据集上的AP50达到了96.7%,在HRSID数据集上AP50达到了95.6%,优于对比方法。 展开更多
关键词 合成孔径雷达 船舶目标检测 双向特征金字塔网络 深度可分离卷积 全局注意力机制
下载PDF
基于改进YOLOv5s-pose的多人人体姿态估计
18
作者 蒋锦华 庄丽萍 +2 位作者 陈锦 姚洪泽 蔡志明 《软件工程》 2024年第1期74-78,共5页
为了提高多人人体姿态检测的准确率,本研究采用YOLOv5s模型用于多人人体姿态检测并对模型进行改进。首先,引入坐标注意力(Coordinate Attention)模块改进骨干网络,将注意力资源分配给关键区域,降低复杂环境中的背景干扰,增强模型对多人... 为了提高多人人体姿态检测的准确率,本研究采用YOLOv5s模型用于多人人体姿态检测并对模型进行改进。首先,引入坐标注意力(Coordinate Attention)模块改进骨干网络,将注意力资源分配给关键区域,降低复杂环境中的背景干扰,增强模型对多人目标的精准定位能力。其次,使用双向特征金字塔网络改进YOLOv5s的特征融合网络,增强网络的信息表达能力。实验结果表明:在多人人体姿态MS COCO2017验证集上,经改进的YOLOv5s算法的检测平均精度高达61.9%,相比原始YOLOv5s网络,平均精度提升了1.5%。由此可见,改进后的网络能更加精准、有效地检测多人人体姿态。 展开更多
关键词 多人人体姿态检测 YOLOv5s 双向特征金字塔网络 检测精度
下载PDF
基于改进的Yolov5的无人机图像小目标检测
19
作者 何宇豪 易明发 +1 位作者 周先存 王冠凌 《智能系统学报》 CSCD 北大核心 2024年第3期635-645,共11页
为了解决无人机航拍图像小目标检测算法检测速度与精度无法兼顾的问题,在Yolov5的基础上,提出了针对于无人机图像小目标检测的Yolov5_GBCS算法。在新的算法中,添加一个额外的检测头,以便增强对小目标的特征融合效果;在主干网络中分别采... 为了解决无人机航拍图像小目标检测算法检测速度与精度无法兼顾的问题,在Yolov5的基础上,提出了针对于无人机图像小目标检测的Yolov5_GBCS算法。在新的算法中,添加一个额外的检测头,以便增强对小目标的特征融合效果;在主干网络中分别采用GhostConv卷积模块、GhostBottleneckC3模块替换部分Conv模块和C3模块用以提取丰富特征和冗余特征以提高模型效率;引入加权双向特征金字塔网络(bidirectional feature pyramid network,BiFPN)结构,用以提高对小目标的检测精度;在主干网络和颈部网络中引入轻量化的卷积块注意力模块(convolutional block attention module,CBAM),关注重要特征并抑制不必要的特征,增强小目标特征表达能力;使用Soft-NMS算法来替换NMS,因此降低了小目标在密集场景下的漏检率。通过在VisDrone2019数据集上的实验结果表明,集成了所有改进的方法后的Yolov5_GBCS算法,不仅提高了检测精度,而且有效地提高了检测速度,模型的mAP从38.5%提高到43.2%,检测速度也从53 f/s提高到59 f/s。Yolov5_GBCS算法可以有效地实现无人机航拍图像中小目标识别。 展开更多
关键词 图像处理 GhostConv卷积模块 双向特征金字塔网络 卷积块注意力模块 Soft双向特征金字塔网络 轻量化模型 小目标检测 VisDrone数据集
下载PDF
一种改进YOLOX_S的火焰烟雾检测算法
20
作者 谢康康 朱文忠 +1 位作者 肖顺兴 谢林森 《科学技术与工程》 北大核心 2024年第8期3298-3307,共10页
针对目前在火灾预警方面还存在火焰烟雾检测效果差、误报率高等问题,在YOLOX框架下提出改进YOLOX_S目标检测算法。首先在数据集建立方面,采用的数据集包括Bilkent University公开的数据集和部分自建数据集,共计9621张图片。并且通过对... 针对目前在火灾预警方面还存在火焰烟雾检测效果差、误报率高等问题,在YOLOX框架下提出改进YOLOX_S目标检测算法。首先在数据集建立方面,采用的数据集包括Bilkent University公开的数据集和部分自建数据集,共计9621张图片。并且通过对数据集采用Mosaic数据增强的方式,增加数据的多样性。其次对backbone部分采用swin-T骨干网络来代替原来的CSPDarkNet骨干网络,能够更好的捕捉不同尺度下的特征,有效地提升了目标检测的精度。然后对网络模型引入加权双向特征金字塔网络(bidirectional feature pyramid network,BiFPN)特征融合网络,提高检测的效率和网络模型的适应性,在复杂背景下同样可以保持较高的检测精度。最后引入CA注意力机制来加强此算法的特征提取能力。经过对比实验表明,改进后的YOLOX_S的火焰烟雾检测算法具有较高准确性,其mAP@0.5(预测框与真实框重合程度的阈值为0.5时的平均检测精度)达到81.5%,相比原网络提高了5.3%。改进后的YOLOX_S网络模型在火焰烟雾检测方面具有更高准确性和更低的误报率。 展开更多
关键词 YOLOX swin transformer 加权双向特征金字塔网络(BiFPN) 火焰烟雾检测 注意力机制
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部