期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于BERT-BiLSTM-CRF的电力事故信息抽取方法
1
作者
赵贵中
黄淼华
《综合智慧能源》
CAS
2024年第11期19-28,共10页
为了探究电力事故规律,建立人身安全预警模型,在大规模事故样本中自动精准抽取信息并进行多维分析十分必要。传统中文信息实体特征抽取的精确度较低,因此,基于新型中文处理的命名实体识别技术,结合多种特定机器学习和深度学习模型,提出...
为了探究电力事故规律,建立人身安全预警模型,在大规模事故样本中自动精准抽取信息并进行多维分析十分必要。传统中文信息实体特征抽取的精确度较低,因此,基于新型中文处理的命名实体识别技术,结合多种特定机器学习和深度学习模型,提出一种专用于电网事故领域的BERT-BiLSTM-CRF模型。通过基于转换器的双向编码表示预训练模型输出高质量词向量,利用语义增强掩码策略增强模型深入理解文本整体结构的能力。运用双向长短期记忆网络模型同时捕捉上下文信息,完成特征提取。根据条件随机场模型输出最优预测序列。试验结果表明,专用模型优势显著,其准确率、召回率和F1值均高于3种现有实体识别模型,包括预训练好的基于生成式预训练转换器技术的通用大模型。试验验证了所提方法在处理中文电力事故信息抽取问题时准确度高,具有显著优势。
展开更多
关键词
电力事故
信息抽取
双向编码表示预训练
双向
长短期记忆网络
条件随机场
下载PDF
职称材料
题名
基于BERT-BiLSTM-CRF的电力事故信息抽取方法
1
作者
赵贵中
黄淼华
机构
广东电网有限责任公司惠州供电局
出处
《综合智慧能源》
CAS
2024年第11期19-28,共10页
基金
南方电网公司科技项目(031300KK52222091)。
文摘
为了探究电力事故规律,建立人身安全预警模型,在大规模事故样本中自动精准抽取信息并进行多维分析十分必要。传统中文信息实体特征抽取的精确度较低,因此,基于新型中文处理的命名实体识别技术,结合多种特定机器学习和深度学习模型,提出一种专用于电网事故领域的BERT-BiLSTM-CRF模型。通过基于转换器的双向编码表示预训练模型输出高质量词向量,利用语义增强掩码策略增强模型深入理解文本整体结构的能力。运用双向长短期记忆网络模型同时捕捉上下文信息,完成特征提取。根据条件随机场模型输出最优预测序列。试验结果表明,专用模型优势显著,其准确率、召回率和F1值均高于3种现有实体识别模型,包括预训练好的基于生成式预训练转换器技术的通用大模型。试验验证了所提方法在处理中文电力事故信息抽取问题时准确度高,具有显著优势。
关键词
电力事故
信息抽取
双向编码表示预训练
双向
长短期记忆网络
条件随机场
Keywords
electric power accidents
information extraction
bidirectional encoder representations from transformers pre-training
bidirection long short-term memory network
conditional random field
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于BERT-BiLSTM-CRF的电力事故信息抽取方法
赵贵中
黄淼华
《综合智慧能源》
CAS
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部