期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
可实现双向自适应差分隐私的联邦学习方案
1
作者 李洋 徐进 +1 位作者 朱建明 王友卫 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2024年第3期158-169,共12页
随着个人数据的爆发式增长,基于差分隐私的联邦学习模型可用于解决数据孤岛问题和保护用户数据隐私,参与者通过训练本地数据,将添加噪声后的参数共享到中心服务器进行聚合,实现分布式机器学习训练。此过程中存在两方面问题:①中心服务... 随着个人数据的爆发式增长,基于差分隐私的联邦学习模型可用于解决数据孤岛问题和保护用户数据隐私,参与者通过训练本地数据,将添加噪声后的参数共享到中心服务器进行聚合,实现分布式机器学习训练。此过程中存在两方面问题:①中心服务器广播参数的过程中数据信息仍未受到保护,有泄露用户隐私的风险;②对参数过度添加噪声会导致参数聚合质量降低,影响最终联邦学习的模型精度。为解决以上问题,提出了一种可实现双向自适应差分隐私的联邦学习方案(FedBADP),对客户端和中心服务器之间传输的梯度进行自适应加噪,在保护数据安全的同时不影响模型准确率。考虑到参与者硬件设备的性能限制,文中对其梯度进行采样以减少通信开销,并在客户端和中心服务器使用均方根传递加速模型的收敛提高模型精度。实验结果证明,文中提出的模型框架在保持较好准确率的同时,也增强了用户的隐私保护能力。 展开更多
关键词 双向自适应噪声 均方根传递 采样 差分隐私 联邦学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部