期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Stability analysis of discrete-time BAM neural networks based on standard neural network models 被引量:1
1
作者 张森林 刘妹琴 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第7期689-696,共8页
To facilitate stability analysis of discrete-time bidirectional associative memory (BAM) neural networks, they were converted into novel neural network models, termed standard neural network models (SNNMs), which inte... To facilitate stability analysis of discrete-time bidirectional associative memory (BAM) neural networks, they were converted into novel neural network models, termed standard neural network models (SNNMs), which interconnect linear dynamic systems and bounded static nonlinear operators. By combining a number of different Lyapunov functionals with S-procedure, some useful criteria of global asymptotic stability and global exponential stability of the equilibrium points of SNNMs were derived. These stability conditions were formulated as linear matrix inequalities (LMIs). So global stability of the discrete-time BAM neural networks could be analyzed by using the stability results of the SNNMs. Compared to the existing stability analysis methods, the proposed approach is easy to implement, less conservative, and is applicable to other recurrent neural networks. 展开更多
关键词 Standard neural network model (SNNM) Bidirectional associative memory (BAM) Linear matrix inequality (LMI) STABILITY Generalized eigenvalue problem (GEVP)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部