期刊文献+
共找到497篇文章
< 1 2 25 >
每页显示 20 50 100
基于双重分解和双向长短时记忆网络的中长期负荷预测模型
1
作者 王继东 于俊源 孔祥玉 《电网技术》 EI CSCD 北大核心 2024年第8期3418-3426,I0121-I0126,共15页
针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(sin... 针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(singular spectrum analysis,SSA)双重分解的双向长短时记忆网络(bidirectional long and short time memory,BiLSTM)预测模型。首先,采用CEEMDAN对历史负荷进行分解,以得到若干个周期规律更为清晰的子序列;再利用多尺度熵(multiscale entropy,MSE)计算所有子序列的复杂程度,根据不同时间尺度上的样本熵值将相似的子序列重构聚合;然后,利用SSA去噪的功能,对高度复杂的新序列进行二次分解,去除序列中的噪声并提取更为主要的规律,从而进一步提高中长序列预测精度;再将得到的最终一组子序列输入BiLSTM进行预测;最后,考虑到天气、节假日等外部因素对电力负荷的影响,提出了一种误差修正技术。选取了巴拿马某地区的用电负荷进行实验,实验结果表明,经过双重分解可以将均方根误差降低87.4%;预测未来一年的负荷序列时,采用的BiLSTM模型将拟合系数最高提高2.5%;所提出的误差修正技术可将均方根误差降低9.7%。 展开更多
关键词 中长期负荷预测 二次分解 多尺度熵 奇异谱分析 双向长短时记忆网络 长序列处理
下载PDF
融合BERT和双向长短时记忆网络的中文反讽识别研究
2
作者 王旭阳 戚楠 魏申酉 《计算机工程与应用》 CSCD 北大核心 2024年第20期153-159,共7页
用户对微博热点话题进行评论时会使用反语、讽刺的修辞手法,其本身带有一定的情感倾向会对情感分析结果造成一定影响。因此该文主要针对中文微博评论进行反讽识别,构建了一个包含反语、讽刺和非反讽的三分类数据集,提出一个基于BERT和... 用户对微博热点话题进行评论时会使用反语、讽刺的修辞手法,其本身带有一定的情感倾向会对情感分析结果造成一定影响。因此该文主要针对中文微博评论进行反讽识别,构建了一个包含反语、讽刺和非反讽的三分类数据集,提出一个基于BERT和双向长短时记忆网络(BiLSTM)的模型BERT_BiLSTM。该模型通过BERT生成含有上下文信息的动态字向量,输入BiLSTM提取文本的深层反讽特征,在全连接层传入softmax对文本进行反讽识别。实验结果表示,在二分类和三分类数据集上,提出的BERT_BiLSTM模型与现有主流模型相比准确率和F1值均有明显提高。 展开更多
关键词 反讽识别 BERT 特征提取 双向长短时记忆网络(BiLSTM)
下载PDF
基于改进灰狼算法优化双向长短时记忆神经网络的水冷壁壁温预测
3
作者 詹毅 冯磊华 +1 位作者 杨锋 钟信 《热力发电》 CAS CSCD 北大核心 2024年第1期188-196,共9页
提出一种基于改进灰狼(MGWO)算法优化双向长短时记忆(BiLSTM)神经网络的水冷壁壁温预测模型,灰狼算法采用非线性因子调整策略、自适应位置更新策略和动态权重修改策略进行改进以提升算法的全局寻优能力,利用改进灰狼算法优化BiLSTM模型... 提出一种基于改进灰狼(MGWO)算法优化双向长短时记忆(BiLSTM)神经网络的水冷壁壁温预测模型,灰狼算法采用非线性因子调整策略、自适应位置更新策略和动态权重修改策略进行改进以提升算法的全局寻优能力,利用改进灰狼算法优化BiLSTM模型的隐藏层数量、学习率和正则化参数以提高模型的预测精度,采用新疆某电厂的数据进行预测仿真,结果表明:改进后的算法预测精度更高,在机组升、降负荷时,均可以预测到壁温的变化趋势,模型的平均均方根误差相比于长短时记忆(LSTM)神经网络、BiLSTM模型分别降低了9.86%和3.69%,且可以提前预测到水冷壁壁温的超温情况,对于预防水冷壁超温有重要意义。 展开更多
关键词 水冷壁 壁温预测 双向长短时记忆神经网络 改进灰狼算法 自适应位置更新
下载PDF
基于双向长短时记忆网络和自注意力机制的药物-药物相互作用预测
4
作者 张明香 顾海明 于彬 《青岛科技大学学报(自然科学版)》 CAS 2024年第5期149-158,共10页
提出了一种基于双层双向长短时记忆网络(bi-directional long short term memory,BiLSTM)和自注意力(self-attention)机制的药物-药物相互作用(drug-drug interactions,DDIs)预测方法SA-BiLSTM。首先,利用FP3指纹、MACCS指纹、Pubchem... 提出了一种基于双层双向长短时记忆网络(bi-directional long short term memory,BiLSTM)和自注意力(self-attention)机制的药物-药物相互作用(drug-drug interactions,DDIs)预测方法SA-BiLSTM。首先,利用FP3指纹、MACCS指纹、Pubchem指纹和PaDEL分子描述符对药物特征信息进行提取。其次,使用套索回归(least absolute shrinkage and selection operator,Lasso)方法消除对分类无关的特征,并利用重复编辑最近邻(repeated edited nearest neighbors,RENN)方法对数据进行平衡处理,得到最优特征向量。最后,将最优特征向量输入结合自注意力机制和双向长短时记忆网络的分类器预测DDIs。基于五折交叉验证,同时与其它预测方法进行比较,本工作所提出的方法在两个数据集上获得较高的预测准确率。为了综合评价SA-BiLSTM的性能,对药物-药物相互作用网络进行验证。实验结果表明,SA-BiLSTM表现出优秀的预测能力,可以为DDIs的预测提供一种新的思路。 展开更多
关键词 药物-药物相互作用 特征提取 重复编辑最近邻 双向长短时记忆网络 自注意力机制
下载PDF
基于双向长短时记忆网络的并网微电网能量供需平衡优化
5
作者 王学兵 张国生 +2 位作者 宋宸 张红权 张雪成 《计算技术与自动化》 2024年第1期142-147,共6页
为保证并网微电网的稳定运行,针对微电网负荷波动较大,稳定性较差的问题,提出基于双向长短时记忆网络的并网微电网能量供需平衡优化方法。该方法通过双向长短时记忆网络划分并网微电网中的负荷类别,并引入注意力机制优化分类结果,获取... 为保证并网微电网的稳定运行,针对微电网负荷波动较大,稳定性较差的问题,提出基于双向长短时记忆网络的并网微电网能量供需平衡优化方法。该方法通过双向长短时记忆网络划分并网微电网中的负荷类别,并引入注意力机制优化分类结果,获取并网微电网中的可控负荷结果;结合该结果和储能系统的能量损失情况、风光综合功率波动水平,构建目标函数并确定约束条件,采用改进帝国竞争算法求解目标函数,获取保证获取全局负荷调度最佳结果,实现并网微电网能量供需平衡优化。测试结果显示:该方法能够有效调度并网微电网中负荷,调整并网微电网供需侧有功和无功功率的结果,使其在±0.50kvar内范围波动,优化后满足微电网中的而负荷需求;保证微电网的稳定运行。 展开更多
关键词 双向长短时 记忆网络 并网微电网 能量供需 平衡优化 可控负荷
下载PDF
双向长短时记忆神经网络在滩坝砂储层岩性识别中的应用 被引量:3
6
作者 陈钢花 张寓侠 +2 位作者 王军 张华锋 王莜文 《测井技术》 CAS 2023年第3期319-325,共7页
研究区致密滩坝砂储层油气储量丰富,勘探开发潜力较高,但存在埋藏深、单层厚度薄、渗透率超低、孔隙结构复杂以及单井自然产能极低的特征,储层划分与岩性识别困难。针对测井数据具有纵向时序连续的特点,构建一个双向长短时记忆神经网络(... 研究区致密滩坝砂储层油气储量丰富,勘探开发潜力较高,但存在埋藏深、单层厚度薄、渗透率超低、孔隙结构复杂以及单井自然产能极低的特征,储层划分与岩性识别困难。针对测井数据具有纵向时序连续的特点,构建一个双向长短时记忆神经网络(BiLSTM)岩性识别模型,采用随机森林方法对常规测井数据等参数进行特征选择,将选择的参数作为输入变量训练BiLSTM模型。应用该模型对测试集的井资料进行验证,结果表明模型的岩性识别准确率为0.86,取得了良好的应用效果,证明了BiLSTM模型适用于滩坝砂储层岩性识别。 展开更多
关键词 测井解释 深度学习 双向长短时记忆神经网络 岩性识别 滩坝砂储层
下载PDF
基于猎人猎物优化与双向长短时记忆组合模型的汽车出车率预测 被引量:2
7
作者 高雨虹 曲昭伟 宋现敏 《交通运输系统工程与信息》 EI CSCD 北大核心 2023年第1期198-206,264,共10页
汽车出车率预测对于交通管理者预先制定精准化管控方案、实施协调化统筹调度,以及调控汽车保有量规模具有重要意义。为此,本文提出一种基于猎人猎物优化算法与双向长短时记忆神经网络组合模型(HPO-BiLSTM)的汽车出车率预测方法。首先,... 汽车出车率预测对于交通管理者预先制定精准化管控方案、实施协调化统筹调度,以及调控汽车保有量规模具有重要意义。为此,本文提出一种基于猎人猎物优化算法与双向长短时记忆神经网络组合模型(HPO-BiLSTM)的汽车出车率预测方法。首先,分析汽车出车率的关键影响因素,提取出17个特征影响因子,结合标准化处理后的重构时间序列,基于随机森林算法进行变量的重要度评估,筛选出最优特征集合作为预测模型输入;其次,为解决神经网络算法容易陷入局部极值的难题,建立一种融合猎人猎物优化算法(HPO)与双向长短时记忆神经网络(BiLSTM)的组合预测模型,利用HPO的探索-开发机制,实现BiLSTM框架的动态化搭建与精细化调参;最后,结合北京市中心城区的汽车出车率数据集进行模型性能的测试与检验。结果表明:与自回归差分移动平均模型、灰色模型、卷积神经网络模型、长短时记忆神经网络模型以及双向长短时记忆神经网络模型等经典算法相比,HPO-BiLSTM模型在汽车出车率预测中的平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和均方根误差(RMSE)分别降低了23.85%~54.38%、20.67%~57.40%、27.48%~59.32%,平均相对误差为-1.57%。说明本文提出的混合深度学习算法具有较高的预测精度与实用性能。 展开更多
关键词 城市交通 汽车出车率预测 双向长短时记忆神经网络 猎人猎物优化算法 深度学习
下载PDF
基于双向长短时记忆网络和注意力机制的RNA m5C甲基化位点预测 被引量:1
8
作者 胡梦 李慧敏 +2 位作者 唐轶 王煜 陈鹏辉 《中国生物化学与分子生物学报》 CAS CSCD 北大核心 2023年第2期303-310,共8页
RNA 5-甲基胞嘧啶(m5C)修饰在许多生物过程中发挥重要的作用,对m5C位点的准确识别有助于更好地理解其生物学功能,所以识别m5C甲基化位点十分必要。尽管已发展了多种识别m5C甲基化位点的机器学习方法,但预测能力仍有待提高。本文基于双... RNA 5-甲基胞嘧啶(m5C)修饰在许多生物过程中发挥重要的作用,对m5C位点的准确识别有助于更好地理解其生物学功能,所以识别m5C甲基化位点十分必要。尽管已发展了多种识别m5C甲基化位点的机器学习方法,但预测能力仍有待提高。本文基于双向长短时记忆网络和注意力机制,提出了一种预测RNA m5C甲基化位点的深度学习算法。用该方法在人、小鼠、酿酒酵母和拟南芥共4种生物的RNA m5C数据集上进行实验,m5C位点预测AUC值分别达到92.5%、99.7%、93.6%和86.5%。与现有预测方法相比,该方法具有较好的预测性能,并且具有更优的泛化能力,为RNA m5C甲基化位点预测提供了一种新方法。 展开更多
关键词 双向长短时记忆网络 注意力机制 m5C甲基化位点 深度学习
下载PDF
基于注意力机制和双向长短时记忆网络的横波速度预测方法及应用 被引量:1
9
作者 何运康 李庆春 刘兴业 《石油物探》 CSCD 北大核心 2023年第2期225-235,共11页
横波速度信息对油气勘探而言至关重要,但实际测井资料中常常缺失横波速度资料。横波速度与测井参数之间存在非线性相关性,二者关系复杂难以用解析解表征。为此,提出了一种基于注意力机制和双向长短时记忆网络的横波速度预测方法(AT-BLS... 横波速度信息对油气勘探而言至关重要,但实际测井资料中常常缺失横波速度资料。横波速度与测井参数之间存在非线性相关性,二者关系复杂难以用解析解表征。为此,提出了一种基于注意力机制和双向长短时记忆网络的横波速度预测方法(AT-BLSTM)。该方法首先利用注意力机制为测井参数分配权重,自动聚焦对横波速度预测贡献大的测井参数,然后利用双向长短时记忆网络以及横波速度曲线纵向上的时序特征,挖掘各种测井参数与横波速度之间的相关关系,获得各种测井参数与横波速度之间的学习模型,再输入优选测井参数,最终可直接获得横波速度的预测结果。将上述方法应用于挪威北海Volve油田和我国西南某工区的实际测井资料进行横波速度预测,并将预测结果与常规双向长短时记忆网络、门控循环神经网络以及基于经验公式的传统方法的预测结果进行对比。结果表明,利用基于注意力机制和双向长短时记忆网络的横波速度预测方法得到的测井参数权重分配合理,横波速度预测结果与实测横波速度误差较小、相关系数较高,有效提高了横波速度预测精度,预测结果具有良好的稳定性。 展开更多
关键词 测井参数 横波速度预测 深度学习 注意力机制 双向长短时记忆网络
下载PDF
电力物联网下双向长短时记忆的线损预测计算策略研究 被引量:1
10
作者 马鹏程 《电工材料》 CAS 2023年第5期74-76,共3页
目前,光、风等可再生能源发电和柔性负荷并网方式导致电力物联网的运行调控难度加大,使输电线的损害逐渐增加。针对这种情况,提出了一种基于电力物联网下双向长短时记忆的线损预测计算方法,为电力运行调控提供重要依据。
关键词 电力物联网 双向长短时记忆 线损
下载PDF
基于双向长短时循环神经网络的沉积微相自动识别方法——以莺歌海盆地东方B气田为例
11
作者 齐春生 丁磊 +2 位作者 焦祥燕 郑志锋 吴妍 《科技和产业》 2023年第5期217-221,共5页
莺歌海盆地东方B气田发育浅海重力流海底扇沉积,其砂体分布及叠置关系复杂,使用人工识别的方式进行沉积微相解释工作繁琐且易受主观因素影响。针对该问题,基于双向长短时循环神经网络设计串行网络架构沉积微相识别模型,该模型以测井资... 莺歌海盆地东方B气田发育浅海重力流海底扇沉积,其砂体分布及叠置关系复杂,使用人工识别的方式进行沉积微相解释工作繁琐且易受主观因素影响。针对该问题,基于双向长短时循环神经网络设计串行网络架构沉积微相识别模型,该模型以测井资料、岩性录井资料为输入,可有效提取不同沉积微相的测井曲线形态特征,并充分考虑相邻沉积微相之间的关联性。将模型应用于该区沉积微相识别工作中,降低了储层非均质性及人工经验带来的影响,提高了识别精度,取得了良好的应用效果。 展开更多
关键词 双向长短时循环神经网络 沉积微相 串行网络架构 莺歌海盆地
下载PDF
基于改进双向长短时记忆网络的自动驾驶车辆驾驶意图识别
12
作者 何东 赵茂杰 王梓楠 《汽车工程师》 2023年第9期9-14,共6页
针对高速混行多车交互环境下车辆驾驶意图识别模型大多忽视驾驶风格和车-车交互信息等问题,提出一种基于改进双向长短时记忆(Bi LSTM)网络的驾驶意图识别模型,以目标车辆轨迹序列、驾驶风格、周围车辆的交互特征作为模型的输入进行训练... 针对高速混行多车交互环境下车辆驾驶意图识别模型大多忽视驾驶风格和车-车交互信息等问题,提出一种基于改进双向长短时记忆(Bi LSTM)网络的驾驶意图识别模型,以目标车辆轨迹序列、驾驶风格、周围车辆的交互特征作为模型的输入进行训练学习,实现对考虑驾驶风格的驾驶意图特征数据集的分类识别,同时使用鲸鱼优化算法对隐含层节点数和学习率等超参数进行寻优,以规避人工调参的负面影响。最后,使用NGSIM数据集对该模型的有效性进行验证,结果表明,模型的识别准确率达到97.5%,证明其在识别车辆驾驶意图方面具有较高的准确性。 展开更多
关键词 自动驾驶 多车交互 驾驶意图识别 改进双向长短时记忆网络 鲸鱼优化算法
下载PDF
结合知识图谱与双向长短时记忆网络的小麦条锈病预测 被引量:26
13
作者 张善文 王振 王祖良 《农业工程学报》 EI CAS CSCD 北大核心 2020年第12期172-178,共7页
针对现有小麦条锈病预测方法没有利用病害发生因素之间的语义信息,存在预测难度大、准确率低等问题,利用知识图谱(Knowledge Graph,KG)和双向长短时记忆网络(Bi-directional Long Short-Term Memory,Bi-LSTM)处理多源异构复杂数据的各... 针对现有小麦条锈病预测方法没有利用病害发生因素之间的语义信息,存在预测难度大、准确率低等问题,利用知识图谱(Knowledge Graph,KG)和双向长短时记忆网络(Bi-directional Long Short-Term Memory,Bi-LSTM)处理多源异构复杂数据的各自优势,提出一种基于KG与Bi-LSTM结合的小麦条锈病预测方法。首先,构建小麦条锈病知识图谱,将与小麦条锈病发生相关的环境信息转换为特征向量;其次,利用特征向量训练Bi-LSTM模型,得到基于Bi-LSTM的小麦条锈病预测模型;最后,利用小麦条锈病数据库数据进行试验。结果表明,KG丰富了进行病害预测所描述的语义信息,提升了Bi-LSTM提取高层病害预测特征的能力,从而提高了病害预测的准确率。在小麦条锈病数据库上的预测准确率达到93.21%,比基于Bi-LSTM的病害预测方法提高了4.5个百分点。该方法能较好预测小麦条锈病,为小麦条锈病的预报预警和综合防治提供科学依据。 展开更多
关键词 病害 预测 模型 小麦条锈病预测 知识图谱 长短记忆 双向长短时记忆网络(Bi-LSTM)
下载PDF
基于双向长短时记忆模型的中文分词方法 被引量:12
14
作者 张洪刚 李焕 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第3期61-67,共7页
中文分词是中文自然语言处理中的关键基础技术之一.目前,传统分词算法依赖于特征工程,而验证特征的有效性需要大量的工作.基于神经网络的深度学习算法的兴起使得模型自动学习特征成为可能.文中基于深度学习中的双向长短时记忆(BLSTM)神... 中文分词是中文自然语言处理中的关键基础技术之一.目前,传统分词算法依赖于特征工程,而验证特征的有效性需要大量的工作.基于神经网络的深度学习算法的兴起使得模型自动学习特征成为可能.文中基于深度学习中的双向长短时记忆(BLSTM)神经网络模型对中文分词进行了研究.首先从大规模语料中学习中文字的语义向量,再将字向量应用于BLSTM模型实现分词,并在简体中文数据集(PKU、MSRA、CTB)和繁体中文数据集(HKCity U)等数据集上进行了实验.实验表明,在不依赖特征工程的情况下,基于BLSTM的中文分词方法仍可取得很好的效果. 展开更多
关键词 深度学习 神经网络 双向长短时记忆 中文分词
下载PDF
基于多任务双向长短时记忆网络的隐式句间关系分析 被引量:7
15
作者 田文洪 高印权 +2 位作者 黄厚文 黎在万 张朝阳 《中文信息学报》 CSCD 北大核心 2019年第5期47-53,共7页
隐式句间关系识别是篇章句间关系识别任务中一个重要的问题。由于隐式句间关系的语料没有较好的特征,目前该任务的识别仍不能达到很好的效果。隐式句间关系的语句和显式句间关系的语句在语义等方面有着一定的联系,为了充分利用这两个任... 隐式句间关系识别是篇章句间关系识别任务中一个重要的问题。由于隐式句间关系的语料没有较好的特征,目前该任务的识别仍不能达到很好的效果。隐式句间关系的语句和显式句间关系的语句在语义等方面有着一定的联系,为了充分利用这两个任务之间的联系,该论文使用多任务学习的方法,并使用双向长短时记忆(BiLSTM)网络学习语句的相关特征;同时,为充分利用文本的特征,采用融合词嵌入的方法并引入先验知识。与其他基于哈工大的中文篇章级语义关系语料库的实验结果表明,该文方法的平均F1值为53%,提升约13%;平均召回率(Recall)为51%,提升约9%。 展开更多
关键词 篇章句间关系识别 隐式句间关系 多任务学习 双向长短时记忆网络 融合词嵌入
下载PDF
基于注意力机制的双向长短时记忆网络模型突发事件演化关系抽取 被引量:11
16
作者 闻畅 刘宇 顾进广 《计算机应用》 CSCD 北大核心 2019年第6期1646-1651,共6页
针对现有突发事件关系抽取研究多集中于因果关系抽取而忽略了其他演化关系的问题,为了提高应急决策中信息抽取的完备性,应用一种基于注意力机制的双向长短时记忆(LSTM)网络模型进行突发事件演化关系抽取。首先,结合突发事件演化关系的概... 针对现有突发事件关系抽取研究多集中于因果关系抽取而忽略了其他演化关系的问题,为了提高应急决策中信息抽取的完备性,应用一种基于注意力机制的双向长短时记忆(LSTM)网络模型进行突发事件演化关系抽取。首先,结合突发事件演化关系的概念,构建演化关系模型并进行形式化定义,依据模型对突发事件语料进行标注;其次,搭建双向LSTM网络结构,并引入注意力机制计算注意力概率以突出关键词汇在文本中的重要程度;最终,使用搭建的网络模型进行演化关系抽取得到结果。在演化关系抽取实验中,相对于现有因果关系抽取方法,所提方法不仅抽取出更加充分的演化关系,为突发事件应急决策提供了更完善的信息;同时,在正确率、召回率和F1分数上分别平均提升了7.3%、6.7%和7.0%,有效提高了突发事件演化关系抽取的准确性。 展开更多
关键词 关系抽取 突发事件 演化关系 注意力机制 双向长短时记忆网络
下载PDF
双向长短时记忆模型训练中的空间平滑正则化方法研究 被引量:3
17
作者 李文洁 葛凤培 +1 位作者 张鹏远 颜永红 《电子与信息学报》 EI CSCD 北大核心 2019年第3期544-550,共7页
双向长短时记忆模型(BLSTM)由于其强大的时间序列建模能力,以及良好的训练稳定性,已经成为语音识别领域主流的声学模型结构。但是该模型结构拥有更大计算量以及参数数量,因此在神经网络训练的过程当中很容易过拟合,进而无法获得理想的... 双向长短时记忆模型(BLSTM)由于其强大的时间序列建模能力,以及良好的训练稳定性,已经成为语音识别领域主流的声学模型结构。但是该模型结构拥有更大计算量以及参数数量,因此在神经网络训练的过程当中很容易过拟合,进而无法获得理想的识别效果。在实际应用中,通常会使用一些技巧来缓解过拟合问题,例如在待优化的目标函数中加入L2正则项就是常用的方法之一。该文提出一种空间平滑的方法,把BLSTM模型激活值的向量重组成一个2维图,通过滤波变换得到它的空间信息,并将平滑该空间信息作为辅助优化目标,与传统的损失函数一起,作为优化神经网络参数的学习准则。实验表明,在电话交谈语音识别任务上,这种方法相比于基线模型取得了相对4%的词错误率(WER)下降。进一步探索了L2范数正则技术和空间平滑方法的互补性,实验结果表明,同时应用这2种算法,能够取得相对8.6%的WER下降。 展开更多
关键词 语音信号处理 空间平滑 双向长短时记忆模型(LSTM) 正则化 过拟合
下载PDF
基于变分模态分解和双向长短时记忆神经网络模型的滑坡位移预测 被引量:9
18
作者 张明岳 李丽敏 温宗周 《山地学报》 CSCD 北大核心 2021年第6期855-866,共12页
滑坡变形的定量预测是滑坡预警系统中的重要组成部分,滑坡变形受其自身地质条件和众多环境因素共同影响,具有动态、复杂和非线性等特点。针对目前滑坡累积位移—时间序列分析研究中随机性位移无法分解与预测、传统预测模型难以模拟滑坡... 滑坡变形的定量预测是滑坡预警系统中的重要组成部分,滑坡变形受其自身地质条件和众多环境因素共同影响,具有动态、复杂和非线性等特点。针对目前滑坡累积位移—时间序列分析研究中随机性位移无法分解与预测、传统预测模型难以模拟滑坡动态演化特性等问题,本文建立了一种基于组合变分模态分解(Variational Mode Decomposition,VMD)和双向长短时记忆(Bidirectional Long Short-Term Memory,Bi-LSTM)神经网络的复合性滑坡位移动态预测模型。该模型首先利用时间序列分析和VMD将滑坡累积位移分解为趋势项、周期项和随机项位移分量,通过分析滑坡的演化特征和诱发滑坡的关键因素,为各位移分量选择合适的影响因素;然后采用多项式拟合预测趋势项位移、Bi-LSTM神经网络对周期项位移和随机项位移进行多数据驱动的动态预测;最后将各位移分量叠加得到累积位移预测值。以新滩滑坡和八字门滑坡为样本,利用实地观测数据,对本模型的预测精度与工程实用性进行对比评估。实验结果表明,本文提出的模型能较好地表征位移“阶跃式”的变形特征。在预测周期项位移时,Bi-LSTM网络相较于长短时记忆神经网络(Long Short-Term Memory,LSTM)和支持向量机(Support Vector Machine,SVM)具有更高的预测精度,平均相对误差(Mean Relative Error,MRE)分别降低了1.339%和7.817%,均方根误差(Root Mean Square Error,RMSE)分别降低了6.761 mm和27.163 mm。说明该模型不仅预测精度高,且更稳定,可以为滑坡防灾减灾工程的实际应用提供新的思路。 展开更多
关键词 滑坡位移 动态预测 变分模态分解 双向长短时记忆神经网络 新滩滑坡 八字门滑坡
下载PDF
基于双向长短时记忆网络的系统异常检测方法 被引量:6
19
作者 张林栋 鲁燃 刘培玉 《计算机应用与软件》 北大核心 2020年第12期297-303,333,共8页
在系统日志异常检测中,日志结构不统一且新执行的日志路径检测依然不够准确。针对这些问题,提出一种基于双向长短时记忆网络的日志路径异常检测模型。通过日志解析器构造日志键使得日志结构统一化,同时将日志键转化为时序序列构建时序... 在系统日志异常检测中,日志结构不统一且新执行的日志路径检测依然不够准确。针对这些问题,提出一种基于双向长短时记忆网络的日志路径异常检测模型。通过日志解析器构造日志键使得日志结构统一化,同时将日志键转化为时序序列构建时序化的日志结构;采用双向长短时记忆网络对时序化的日志序列进行建模和预测,根据是否发生误判来优化模型参数,提升新执行的日志路径检测效率。实验结果表明,与传统的基于机器学习的日志路径异常检测模型相比,该模型在HDFS和OpenStack数据集上准确率分别提升11%和20%,验证了该模型的有效性。 展开更多
关键词 异常检测 日志路径 双向长短时记忆网络 日志解析器 日志键 序序列号
下载PDF
基于双向长短时记忆神经网络的步态时空参数脑肌电解码方法 被引量:2
20
作者 魏鹏娜 马鹏程 +1 位作者 张进华 洪军 《西安交通大学学报》 EI CAS CSCD 北大核心 2022年第9期142-150,共9页
针对脑电(EEG)信号对连续步态轨迹解码结果与实际轨迹相关性低的问题,提出一种基于双向长短时记忆(BiLSTM)神经网络的步态参数解码方法。首先,构建基于双向长短时记忆神经网络的步态时空参数解码模型,根据脑肌电信号特性设计解码模型的... 针对脑电(EEG)信号对连续步态轨迹解码结果与实际轨迹相关性低的问题,提出一种基于双向长短时记忆(BiLSTM)神经网络的步态参数解码方法。首先,构建基于双向长短时记忆神经网络的步态时空参数解码模型,根据脑肌电信号特性设计解码模型的超参数;其次,同步采集脑电、下肢运动相关肌肉的表面肌电信号(sEMG)和下肢关节运动信号,并对脑电和表面肌电信号的步态相关特征进行分析;然后,以多通道脑电和下肢运动相关表面肌电信号作为解码模型的输入,自动提取脑肌电融合信号中步态相关特征并构建膝踝关节运动轨迹与特征之间的非线性回归模型;最后,以多通道脑电作为解码模型的输入,构建步态相关脑电信号和表面肌电信号之间的非线性回归模型。实验结果表明:所提方法与传统支持向量机方法相比,对踝关节解码轨迹与实测轨迹形状相似性Pearson相关系数提高了0.12;与单独采用脑电、表面肌电信号和脑肌电信号平均绝对值特征融合信号进行解码方法相比,对踝关节解码轨迹与实测轨迹形状相似性Pearson相关系数分别提高了0.81、0.19和0.63。该方法可实现从脑电信号中对部分表面肌电信号波形的解码,解码波形和实测波形的平均Pearson相关系数值接近0.5,证明从脑电信号中可解码出肌肉通道的表面肌电信号波形,为下肢外骨骼主动连续控制的应用提供了新思路。 展开更多
关键词 脑电 表面肌电 双向长短时记忆神经网络 步态空参数解码 Pearson相关
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部