期刊文献+
共找到2,743篇文章
< 1 2 138 >
每页显示 20 50 100
基于集群辨识和卷积神经网络-双向长短期记忆-时序模式注意力机制的区域级短期负荷预测 被引量:1
1
作者 陈晓梅 肖徐东 《现代电力》 北大核心 2024年第1期106-115,共10页
为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力... 为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力机制(temporal pattern attention,TPA)的预测方法。首先,将用电模式和天气作为影响因素,基于二阶聚类算法对区域内的负荷节点进行集群辨识,再从每个集群中挑选代表特征作为深度学习模型的输入,这样既能减少输入特征维度,降低计算复杂度,又能综合考虑预测区域的整体特征,提升预测精度。然后,针对区域电力负荷时序性的特点,用CNN-BiLSTM-TPA模型完成训练和预测,该模型能提取输入数据的双向信息生成隐状态矩阵,并对隐状态矩阵的重要特征加权,从多时间步上捕获双向时序信息用于预测。最后,在美国加利福尼亚州实例上分析验证了所提方法的有效性。 展开更多
关键词 短期电力负荷预测 双向长短记忆网络 序模式注意力机制 集群辨识 卷积神经网络
下载PDF
双向长短期记忆网络的时间序列预测方法
2
作者 管业鹏 苏光耀 盛怡 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2024年第3期103-112,共10页
时间序列预测即利用历史时间序列数据,预测未来一段时间内的数据信息,以便提前制定相应策略。目前,时间序列的类别复杂繁多,而现有的时间序列预测模型面对多种类型数据时无法取得稳定预测的结果,进而难以同时满足对现实中多种复杂的时... 时间序列预测即利用历史时间序列数据,预测未来一段时间内的数据信息,以便提前制定相应策略。目前,时间序列的类别复杂繁多,而现有的时间序列预测模型面对多种类型数据时无法取得稳定预测的结果,进而难以同时满足对现实中多种复杂的时序数据预测的应用需求。针对上述问题,提出了一种基于时间注意力机制双向长短期记忆网络的时间序列预测方法。笔者提出的网络模型采用改进的正向和反向传播机制提取时序信息并通过自适应权重分配策略推理未来的时序信息。具体来说,设计了一个改进的双向长短期记忆网络,通过结合双向长短期记忆和长短期记忆网络提取深度时间序列特征,挖掘上下文的时序依赖关系。在此基础上,融合所提出的时间注意力机制,实现对深度时间序列特征进行自适应加权,提升深度时序特征的显著性表达能力。通过与同类代表性方法在多个不同类别数据集上的客观定量对比,实验结果表明,该方法能够在多种类别的复杂时间序列数据上更优的预测性能。 展开更多
关键词 间序列 双向长短记忆网络 长短记忆网络 注意力机制 深度学习
下载PDF
基于双重分解和双向长短时记忆网络的中长期负荷预测模型
3
作者 王继东 于俊源 孔祥玉 《电网技术》 EI CSCD 北大核心 2024年第8期3418-3426,I0121-I0126,共15页
针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(sin... 针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(singular spectrum analysis,SSA)双重分解的双向长短时记忆网络(bidirectional long and short time memory,BiLSTM)预测模型。首先,采用CEEMDAN对历史负荷进行分解,以得到若干个周期规律更为清晰的子序列;再利用多尺度熵(multiscale entropy,MSE)计算所有子序列的复杂程度,根据不同时间尺度上的样本熵值将相似的子序列重构聚合;然后,利用SSA去噪的功能,对高度复杂的新序列进行二次分解,去除序列中的噪声并提取更为主要的规律,从而进一步提高中长序列预测精度;再将得到的最终一组子序列输入BiLSTM进行预测;最后,考虑到天气、节假日等外部因素对电力负荷的影响,提出了一种误差修正技术。选取了巴拿马某地区的用电负荷进行实验,实验结果表明,经过双重分解可以将均方根误差降低87.4%;预测未来一年的负荷序列时,采用的BiLSTM模型将拟合系数最高提高2.5%;所提出的误差修正技术可将均方根误差降低9.7%。 展开更多
关键词 中长期负荷预测 二次分解 多尺度熵 奇异谱分析 双向长短记忆网络 长序列处理
下载PDF
融合BERT和双向长短时记忆网络的中文反讽识别研究
4
作者 王旭阳 戚楠 魏申酉 《计算机工程与应用》 CSCD 北大核心 2024年第20期153-159,共7页
用户对微博热点话题进行评论时会使用反语、讽刺的修辞手法,其本身带有一定的情感倾向会对情感分析结果造成一定影响。因此该文主要针对中文微博评论进行反讽识别,构建了一个包含反语、讽刺和非反讽的三分类数据集,提出一个基于BERT和... 用户对微博热点话题进行评论时会使用反语、讽刺的修辞手法,其本身带有一定的情感倾向会对情感分析结果造成一定影响。因此该文主要针对中文微博评论进行反讽识别,构建了一个包含反语、讽刺和非反讽的三分类数据集,提出一个基于BERT和双向长短时记忆网络(BiLSTM)的模型BERT_BiLSTM。该模型通过BERT生成含有上下文信息的动态字向量,输入BiLSTM提取文本的深层反讽特征,在全连接层传入softmax对文本进行反讽识别。实验结果表示,在二分类和三分类数据集上,提出的BERT_BiLSTM模型与现有主流模型相比准确率和F1值均有明显提高。 展开更多
关键词 反讽识别 BERT 特征提取 双向长短记忆网络(BiLSTM)
下载PDF
基于改进灰狼算法优化双向长短时记忆神经网络的水冷壁壁温预测
5
作者 詹毅 冯磊华 +1 位作者 杨锋 钟信 《热力发电》 CAS CSCD 北大核心 2024年第1期188-196,共9页
提出一种基于改进灰狼(MGWO)算法优化双向长短时记忆(BiLSTM)神经网络的水冷壁壁温预测模型,灰狼算法采用非线性因子调整策略、自适应位置更新策略和动态权重修改策略进行改进以提升算法的全局寻优能力,利用改进灰狼算法优化BiLSTM模型... 提出一种基于改进灰狼(MGWO)算法优化双向长短时记忆(BiLSTM)神经网络的水冷壁壁温预测模型,灰狼算法采用非线性因子调整策略、自适应位置更新策略和动态权重修改策略进行改进以提升算法的全局寻优能力,利用改进灰狼算法优化BiLSTM模型的隐藏层数量、学习率和正则化参数以提高模型的预测精度,采用新疆某电厂的数据进行预测仿真,结果表明:改进后的算法预测精度更高,在机组升、降负荷时,均可以预测到壁温的变化趋势,模型的平均均方根误差相比于长短时记忆(LSTM)神经网络、BiLSTM模型分别降低了9.86%和3.69%,且可以提前预测到水冷壁壁温的超温情况,对于预防水冷壁超温有重要意义。 展开更多
关键词 水冷壁 壁温预测 双向长短记忆神经网络 改进灰狼算法 自适应位置更新
下载PDF
基于双向长短时记忆网络和自注意力机制的药物-药物相互作用预测
6
作者 张明香 顾海明 于彬 《青岛科技大学学报(自然科学版)》 CAS 2024年第5期149-158,共10页
提出了一种基于双层双向长短时记忆网络(bi-directional long short term memory,BiLSTM)和自注意力(self-attention)机制的药物-药物相互作用(drug-drug interactions,DDIs)预测方法SA-BiLSTM。首先,利用FP3指纹、MACCS指纹、Pubchem... 提出了一种基于双层双向长短时记忆网络(bi-directional long short term memory,BiLSTM)和自注意力(self-attention)机制的药物-药物相互作用(drug-drug interactions,DDIs)预测方法SA-BiLSTM。首先,利用FP3指纹、MACCS指纹、Pubchem指纹和PaDEL分子描述符对药物特征信息进行提取。其次,使用套索回归(least absolute shrinkage and selection operator,Lasso)方法消除对分类无关的特征,并利用重复编辑最近邻(repeated edited nearest neighbors,RENN)方法对数据进行平衡处理,得到最优特征向量。最后,将最优特征向量输入结合自注意力机制和双向长短时记忆网络的分类器预测DDIs。基于五折交叉验证,同时与其它预测方法进行比较,本工作所提出的方法在两个数据集上获得较高的预测准确率。为了综合评价SA-BiLSTM的性能,对药物-药物相互作用网络进行验证。实验结果表明,SA-BiLSTM表现出优秀的预测能力,可以为DDIs的预测提供一种新的思路。 展开更多
关键词 药物-药物相互作用 特征提取 重复编辑最近邻 双向长短记忆网络 自注意力机制
下载PDF
基于双向长短时记忆网络的藏语语音情感识别
7
作者 李珊珊 边巴旺堆 《信息技术与信息化》 2024年第10期12-15,共4页
为提高藏语拉萨方言的语音情感识别准确度,构建了一个包含6000条语音样本的语料库,采用了改进的MFCC特征提取方法和双向长短时记忆网络(BiLSTM)模型。改进的MFCC特征能更有效地表征藏语中的情感信息,而BiLSTM模型则能有效捕捉语音序列... 为提高藏语拉萨方言的语音情感识别准确度,构建了一个包含6000条语音样本的语料库,采用了改进的MFCC特征提取方法和双向长短时记忆网络(BiLSTM)模型。改进的MFCC特征能更有效地表征藏语中的情感信息,而BiLSTM模型则能有效捕捉语音序列中的长期依赖关系,这对于情感识别任务尤为重要。研究结果显示,所设计的方法达到了81%的准确率,相较于传统方法有显著提升,在处理藏语情感识别方面具有很高的效果和潜力。未来的研究方向包括进一步优化模型结构,探索更多的深度学习架构,改进语音特征提取技术,以进一步提高模型的准确率和泛化能力,为语音情感识别技术在藏语等少数民族语言中的应用奠定重要的基础。 展开更多
关键词 藏语情感识别 MFCC特征 长短记忆网络 语音情感分析 深度学习
下载PDF
基于双向长短时记忆网络的并网微电网能量供需平衡优化
8
作者 王学兵 张国生 +2 位作者 宋宸 张红权 张雪成 《计算技术与自动化》 2024年第1期142-147,共6页
为保证并网微电网的稳定运行,针对微电网负荷波动较大,稳定性较差的问题,提出基于双向长短时记忆网络的并网微电网能量供需平衡优化方法。该方法通过双向长短时记忆网络划分并网微电网中的负荷类别,并引入注意力机制优化分类结果,获取... 为保证并网微电网的稳定运行,针对微电网负荷波动较大,稳定性较差的问题,提出基于双向长短时记忆网络的并网微电网能量供需平衡优化方法。该方法通过双向长短时记忆网络划分并网微电网中的负荷类别,并引入注意力机制优化分类结果,获取并网微电网中的可控负荷结果;结合该结果和储能系统的能量损失情况、风光综合功率波动水平,构建目标函数并确定约束条件,采用改进帝国竞争算法求解目标函数,获取保证获取全局负荷调度最佳结果,实现并网微电网能量供需平衡优化。测试结果显示:该方法能够有效调度并网微电网中负荷,调整并网微电网供需侧有功和无功功率的结果,使其在±0.50kvar内范围波动,优化后满足微电网中的而负荷需求;保证微电网的稳定运行。 展开更多
关键词 双向长短 记忆网络 并网微电网 能量供需 平衡优化 可控负荷
下载PDF
基于深度双向长短时记忆网络的集装箱港口卡车轨迹预测
9
作者 夏喻义 庞铖 高明琪 《珠江水运》 2024年第3期135-139,共5页
车辆轨迹预测是交通工程和人工智能领域中的一个关键研究议题,具有广泛的应用前景,包括自动驾驶、交通管理和智能交通系统等。在本研究中,着重解决港口区域内用于搬运集装箱的卡车在遭受遮挡时出现的瞬时定位误差。为此,本文设计了一种... 车辆轨迹预测是交通工程和人工智能领域中的一个关键研究议题,具有广泛的应用前景,包括自动驾驶、交通管理和智能交通系统等。在本研究中,着重解决港口区域内用于搬运集装箱的卡车在遭受遮挡时出现的瞬时定位误差。为此,本文设计了一种数据驱动的车辆轨迹预测框i架。该框架通过先行处理大规模GPS数据集,并采用深度双向长短时记忆网络i(DeepBLSTM)进行模型训练。针对从实际港口内收集而来的轨迹数据,使用DeepBLSTM网络与传统算法(如i卡尔曼滤波器)、机器学习技术(如支持向量回归)进行了对比。实验结果显示,DeepBLSTM在均方根误差(RMSE)、平均绝对误差(MAE)、F1分数以及轨迹重构误差(TRE)等多个评价指标上均表现出色,相对于传统方法,性能提升约为70%。因此,本文所提出的这一基于数据驱动的目标轨迹预测方法在准确度和实用性方面均具有明显优势,为港口内集装箱卡车的精准定位提供了有效的解决方案。 展开更多
关键词 数据驱动 轨迹预测 长短记忆网络
下载PDF
基于长短时记忆网络的山区中小流域降雨径流模拟
10
作者 张锦堂 任明磊 +4 位作者 李京兵 唐榕 钟小燕 王刚 王玉丽 《水电能源科学》 北大核心 2024年第8期33-37,共5页
洪水预报是流域防洪减灾的重要非工程措施之一。目前我国中小河流暴雨洪水灾害频发,但应对短历时强降雨的洪水预报能力仍不强。以安徽省东部山区中小流域为研究对象,引入长短时记忆网络建立流域降雨径流模型,探讨其在山区中小流域的洪... 洪水预报是流域防洪减灾的重要非工程措施之一。目前我国中小河流暴雨洪水灾害频发,但应对短历时强降雨的洪水预报能力仍不强。以安徽省东部山区中小流域为研究对象,引入长短时记忆网络建立流域降雨径流模型,探讨其在山区中小流域的洪水模拟效果。结果表明,考虑降雨输入的空间差异可提升深度学习模型降雨径流模拟预测性能,且长短时记忆网络能够取得优于传统人工神经网络的精度;长短时记忆网络模型有效建立了流域降雨与径流间的复杂非线性关系,模型在所选流域内场次洪水的峰值模拟效果较好,训练、测试集场次洪水峰值合格率均在90%以上;长短时记忆网络内部结构特征与流域水文过程具有较好的相似性,对山区中小流域暴雨洪水非线性关系拟合效果突出。 展开更多
关键词 山丘区 长短记忆网络 中小河流 降雨径流模拟
下载PDF
基于长短时记忆网络和生成对抗网络的VRB储能系统虚假数据注入攻击检测
11
作者 陆鹏 付华 卢万杰 《电网技术》 EI CSCD 北大核心 2024年第1期383-393,共11页
随着信息技术的不断发展,直流微电网储能系统已成为深度融合的信息物理系统,而精确的荷电状态估计对储能系统的实时监测和安全稳定运行至关重要。针对全钒液流电池(vanadium redox flow battery,VRB)储能系统荷电状态估计中,由虚假数据... 随着信息技术的不断发展,直流微电网储能系统已成为深度融合的信息物理系统,而精确的荷电状态估计对储能系统的实时监测和安全稳定运行至关重要。针对全钒液流电池(vanadium redox flow battery,VRB)储能系统荷电状态估计中,由虚假数据注入攻击导致的异常数据检测问题,提出一种基于长短时记忆网络和生成对抗网络的检测方法。首先,建立了VRB等效电路模型和虚假数据注入攻击模型;然后,通过训练长短时记忆网络和生成对抗网络组成的循环网络,将长短时记忆神经网络嵌入生成对抗网络框架作为生成器和鉴别器来分析电池时序数据,通过判别网络中的判别损失误差和生成网络中的重构残差得到异常损失进行综合判断;最后,以CEC-VRB-5kW型号电池为对象,并构造不同强度的虚假数据攻击进行实验,验证检测方法的准确性与可行性。结果表明,与经典循环神经网络、随机森林、自编码器、长短时记忆网络检测方法进行对比,所提方法具有较高的检测精度,在VRB储能系统荷电状态估计中能够有效辨识虚假数据攻击。 展开更多
关键词 长短记忆网络 生成对抗网络 储能系统 SOC估计 虚假数据注入攻击
下载PDF
基于长短时记忆网络的恒温水浴锅温度模型预测
12
作者 高兴泉 俞文博 段虹州 《河南科技》 2024年第2期34-39,共6页
【目的】由于恒温水浴锅温度系统存在强非线性及大滞后性,本研究提出一种基于长短时记忆网络的恒温水浴锅温度模型预测方法。【方法】首先,对采集到的数据进行标准化处理,寻找长短时记忆网络的最优结构及超参数,用来拟合出最佳的数据映... 【目的】由于恒温水浴锅温度系统存在强非线性及大滞后性,本研究提出一种基于长短时记忆网络的恒温水浴锅温度模型预测方法。【方法】首先,对采集到的数据进行标准化处理,寻找长短时记忆网络的最优结构及超参数,用来拟合出最佳的数据映射特征,并构建恒温水浴锅温度的动态数学模型。其次,通过模型对未来一段时间内的温度趋势进行预测。最后,使用本研究提出的方法与最小二乘法所预测的结果进行对比分析。【结果】本研究所提方法构建的模型的拟合度达到了98.2%,预测结果的MSE及MAE比最小二乘法模型分别降低了4.616、0.823。【结论】本研究所提方法具有更高的预测精度,对提高恒温水浴锅的生产效率及控制精度具有重要意义。 展开更多
关键词 恒温水浴锅 长短记忆网络 温度预测 数学模型
下载PDF
基于卷积长短时记忆网络的短时公交客流量预测
13
作者 陈静 张昭冲 +2 位作者 王琳凯 安脉 王伟 《系统仿真学报》 CAS CSCD 北大核心 2024年第2期476-486,共11页
针对传统的短时客流预测方法没有考虑到时序特征中跨时段客流之间的相似性问题,提出一种改进k-means聚类算法与卷积神经网络和长短时记忆网络相结合的短时客流量预测模型k-CNN-LSTM。通过k-means算法对跨时段时序数据进行聚类,使用间隔... 针对传统的短时客流预测方法没有考虑到时序特征中跨时段客流之间的相似性问题,提出一种改进k-means聚类算法与卷积神经网络和长短时记忆网络相结合的短时客流量预测模型k-CNN-LSTM。通过k-means算法对跨时段时序数据进行聚类,使用间隔统计确定k值,构建交通流矩阵模型,采用CNN-LSTM网络处理具有时空特征的短时客流。该模型能够对具有空间相关性的数据进行较为准确的预测。使用真实数据集对模型进行检验和参数调优,实验结果表明:k-CNN-LSTM模型较其他模型有相对较高的预测精度。 展开更多
关键词 卷积神经网络 长短记忆网络 空数据预测 K-MEANS聚类 客流量预测
下载PDF
GPU异构计算环境中长短时记忆网络模型的应用及优化
14
作者 梁桂才 梁思成 陆莹 《计算机应用文摘》 2024年第10期37-41,共5页
随着深度学习的广泛应用及算力资源的异构化,在GPU异构计算环境下的深度学习加速成为又一研究热点。文章探讨了在GPU异构计算环境中如何应用长短时记忆网络模型,并通过优化策略提高其性能。首先,介绍了长短时记忆网络模型的基本结构(包... 随着深度学习的广泛应用及算力资源的异构化,在GPU异构计算环境下的深度学习加速成为又一研究热点。文章探讨了在GPU异构计算环境中如何应用长短时记忆网络模型,并通过优化策略提高其性能。首先,介绍了长短时记忆网络模型的基本结构(包括门控循环单元、丢弃法、Adam与双向长短时记忆网络等);其次,提出了在GPU上执行的一系列优化方法,如CuDNN库的应用及并行计算的设计等。最终,通过实验分析了以上优化方法在训练时间、验证集性能、测试集性能、超参数和硬件资源使用等方面的差异。 展开更多
关键词 GPU异构 长短记忆网络 门控循环单元 ADAM DROPOUT CuDNN
下载PDF
基于双向长短期记忆网络含间接健康指标的锂电池SOH估计 被引量:4
15
作者 方斯顿 刘龙真 +3 位作者 孔赖强 牛涛 陈冠宏 廖瑞金 《电力系统自动化》 EI CSCD 北大核心 2024年第4期160-168,共9页
快速准确地对锂离子电池进行全寿命周期的健康状态(SOH)估计有助于提高储能设备的安全可靠性。提出一种基于间接健康指标(IHI)和鲸鱼优化算法(WOA)优化的双向长短期记忆(BiLSTM)网络相结合的锂电池SOH估计模型,该模型考虑了未来状态对当... 快速准确地对锂离子电池进行全寿命周期的健康状态(SOH)估计有助于提高储能设备的安全可靠性。提出一种基于间接健康指标(IHI)和鲸鱼优化算法(WOA)优化的双向长短期记忆(BiLSTM)网络相结合的锂电池SOH估计模型,该模型考虑了未来状态对当前SOH的影响。首先,对锂电池恒流恒压(CC-CV)充放电过程进行分析,提取出多个随充放电循环动态变化的电压、电流、温度的时间特征作为IHI,并加入放电负载电压下降时间这一指标;然后,通过相关性分析,从各IHI中筛选出和容量关联度高的IHI作为输入特征;最后,建立基于WOA优化的BiLSTM网络的电池SOH估计模型,并利用美国国家航天航空局锂电池数据集对2个不同工况下的电池SOH进行估计。结果表明,所提方法可有效提高SOH的估计精度。 展开更多
关键词 健康状态 锂离子电池 间接健康指标 鲸鱼优化算法 双向长短记忆网络
下载PDF
鲸鱼优化算法-双向长短期记忆神经网络用于断路器机械剩余寿命的预测研究 被引量:1
16
作者 李家豪 王青于 +4 位作者 范玥霖 史石峰 彭宗仁 曹培 徐鹏 《高电压技术》 EI CAS CSCD 北大核心 2024年第1期250-262,共13页
低压断路器的安全可靠是电力系统能否稳定运行的关键一环,因此对断路器进行退化趋势预测和剩余寿命评估具有重要意义。基于鲸鱼优化算法(whale optimization algorithm,WOA)和双向长短期记忆神经网络(bidirectional long short-term mem... 低压断路器的安全可靠是电力系统能否稳定运行的关键一环,因此对断路器进行退化趋势预测和剩余寿命评估具有重要意义。基于鲸鱼优化算法(whale optimization algorithm,WOA)和双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)提出了一种断路器操动机构剩余寿命的预测方法,首先采用Pearson相关系数法对获得的原始监测数据进行筛选,选择与断路器开断次数相关度较高的数据作为关键退化特征量,基于主成分分析法进行数据融合获得能够综合表征断路器运行状态的健康指数;随后使用滑动时间窗的方法对健康指数时间序列进行重构,再通过WOA-Bi LSTM寻优获得的最佳模型对健康指数进行时间序列预测,从而获得断路器未来多步的退化趋势;最后再根据设定的失效阈值,确定断路器操动机构的剩余寿命。实例验证表明,该文提出的混合预测模型预测精度最高可达96.43%,相比于其他传统预测模型显著提高,对于断路器的实际运维工作具有一定的指导意义。 展开更多
关键词 低压断路器 退化趋势 剩余寿命 双向长短记忆网络 鲸鱼优化
下载PDF
基于长短时记忆网络的顶托影响下干支流洪水模拟研究
17
作者 张艺佳 吴剑 +2 位作者 彭勇 丁勇 郭家园 《水电能源科学》 北大核心 2024年第10期24-28,共5页
干支流交汇河段易发生洪水相互顶托现象,造成河段持续处于高水位,极大地增加了洪水模拟的难度。以三岔河口上游受顶托影响显著的嫩江大赉站为研究对象,首先分析识别大赉站历史洪水的顶托关系,并根据洪水顶托关系划分洪水类型;在此基础... 干支流交汇河段易发生洪水相互顶托现象,造成河段持续处于高水位,极大地增加了洪水模拟的难度。以三岔河口上游受顶托影响显著的嫩江大赉站为研究对象,首先分析识别大赉站历史洪水的顶托关系,并根据洪水顶托关系划分洪水类型;在此基础上采用长短时记忆(LSTM)网络建立洪水模拟模型,评估模型的模拟效果。结果表明,采用流量、水位变化率可以较为有效地识别洪水顶托关系,历史上嫩江受到洪水顶托影响的年份较多;LSTM模型输入中仅考虑上游来水对大赉站流量模拟精度影响相对较小,而对水位模拟精度影响显著;考虑顶托影响的LSTM模型对大赉站的流量、水位模拟精度均较高。可见,所构建的LSTM模型能较准确地模拟出顶托影响下的大赉站洪水过程,为类似流域或站点的洪水模拟提供参考。 展开更多
关键词 机器学习 长短记忆网络 洪水顶托 洪水模拟
下载PDF
基于残差神经网络、双向长短期记忆网络和注意力机制的肠鸣音检测方法研究
18
作者 郝亚丽 万显荣 +3 位作者 江从庆 任相海 张小明 翟详 《中国医疗器械杂志》 2024年第5期498-504,共7页
肠鸣音可以反映胃肠道的运动和健康状况,然而,传统的人工听诊方式存在主观性偏差且耗时耗力。为了更好地辅助医生对肠鸣音的诊断,提高肠鸣音检测的可靠性和高效性,该研究提出了一种结合残差神经网络(ResNet)、双向长短期记忆网络(BiLSTM... 肠鸣音可以反映胃肠道的运动和健康状况,然而,传统的人工听诊方式存在主观性偏差且耗时耗力。为了更好地辅助医生对肠鸣音的诊断,提高肠鸣音检测的可靠性和高效性,该研究提出了一种结合残差神经网络(ResNet)、双向长短期记忆网络(BiLSTM)和注意力机制的深度神经网络模型。首先使用自主研发的多通道肠鸣音采集系统采集了大量带标签的临床数据,采用多尺度小波分解和重构方法对肠鸣音信号进行预处理,然后提取对数梅尔谱图特征送入网络进行训练,最后通过10折交叉验证和消融实验来评估模型的性能和验证其有效性。实验结果表明,该模型在精确率、召回率和F1分数方面分别达到了83%、76%和79%,能够有效地检测出肠鸣音片段并定位其起止时间,表现优于以往的算法。该算法不仅可以为医生在临床实践中提供辅助信息,还为肠鸣音的进一步分析和研究提供了技术支撑。 展开更多
关键词 肠鸣音 残差神经网络 双向长短记忆网络 注意力机制
下载PDF
基于卷积长短时记忆网络的国际平整度指标预测 被引量:1
19
作者 黄凯枫 刘庆华 《计算机与数字工程》 2024年第1期111-115,共5页
公路的快速发展带来了对路面各项指标快速检测和分析的需求,针对路面国际平整度指标的特点,提出使用卷积神经网络与长短期记忆神经网络的结合(CNN-LSTM)对国际平整度指标进行预测,卷积神经网络和长短期记忆神经网络分别学习激光雷达距... 公路的快速发展带来了对路面各项指标快速检测和分析的需求,针对路面国际平整度指标的特点,提出使用卷积神经网络与长短期记忆神经网络的结合(CNN-LSTM)对国际平整度指标进行预测,卷积神经网络和长短期记忆神经网络分别学习激光雷达距离数据的空间维度特征和时间维度特征,完成对平整度指标的预测。实验结果表明,相比较与LSTM网络,CNN-LSTM模型的MAPE值仅有2.3488,准确度和召回率分别达到90.61%和87.89%。通过真实值和预测值的对比可以发现CNN-LSTM更加适用于国际平整度指标的预测。 展开更多
关键词 长短记忆神经网络 国际平整度预测 卷积神经网络 路面平整度
下载PDF
基于张量空谱卷积长短时记忆网络的遥感图像分类模型
20
作者 胡文帅 李伟 +2 位作者 李恒超 张蒙蒙 陶然 《指挥与控制学报》 CSCD 北大核心 2024年第4期458-468,共11页
基于遥感图像的地物要素分类与提取是实现数字化战场建设、智能化战场感知的关键支撑技术之一。实际应用平台运算资源有限、样本匮乏导致训练不充分等制约深度神经网络的遥感图像地物分类效果。基于张量链式分解和权重共享,设计空谱卷... 基于遥感图像的地物要素分类与提取是实现数字化战场建设、智能化战场感知的关键支撑技术之一。实际应用平台运算资源有限、样本匮乏导致训练不充分等制约深度神经网络的遥感图像地物分类效果。基于张量链式分解和权重共享,设计空谱卷积长短时记忆单元的两种张量扩展结构,提出轻量级张量空谱卷积长短时记忆网络用于遥感图像分类。在两个公开高光谱遥感图像数据集进行实验,该算法仅需0.34MB存储空间,较同类方法实现更优分类性能。 展开更多
关键词 遥感图像 网络轻量化 卷积长短记忆网络 张量分解 精细分类
下载PDF
上一页 1 2 138 下一页 到第
使用帮助 返回顶部