为提高瓦斯涌出量预测精度,降低煤矿回采工作面瓦斯涌出超限事故的风险,针对瓦斯涌影响因素众多、难以预测等问题,采用灰狼优化算法(Grey Wolf Optimization,GWO)双向长短期记忆神经网络(Bi-directional Long Short-Term Memory,BiLSTM...为提高瓦斯涌出量预测精度,降低煤矿回采工作面瓦斯涌出超限事故的风险,针对瓦斯涌影响因素众多、难以预测等问题,采用灰狼优化算法(Grey Wolf Optimization,GWO)双向长短期记忆神经网络(Bi-directional Long Short-Term Memory,BiLSTM)的组合模型预测瓦斯涌出量。首先,运用主成分分析法(Principal Components Analysis,PCA)处理瓦斯涌出影响因素,降低数据维度,以减少模型计算时的负担;其次,利用GWO优化BiLSTM模型的学习率(best_lr)、隐藏层层数(best_hd)以及正则化系数(best_l2),可有效避免局部最优解问题,并采用决定系数(R-Square,R^(2))、均方根误差(Root Mean Square Error,RMSE)和平均绝对误差(Mean Absolute Error,MAE)对所建模型预测的结果进行综合评价分析;最后,将该模型应用于内蒙古自治区某矿回采工作面预测瓦斯涌出量。结果显示:PCA GWO BiLSTM组合模型相比于长短期记忆神经网络(Long Short-Term Memory,LSTM)和双向长短期记忆神经网络对应的单一模型,其MAE分别降低20.81%、30.17%,RMSE分别降低0.063、0.142,R^(2)则分别提高了0.023、0.075,表明该模型在复杂因素条件下具有更高的精准度、泛化性和鲁棒性。展开更多
介绍一种基于双向长短期记忆神经网络(Bi-directional long short-term memory,Bi-LSTM)的岩相预测方法,综合利用测井和地震数据进行高效准确的岩相预测。通过合成地震记录,进行井震数据的时深匹配,以地震吸收衰减数据、纵波阻抗、密度...介绍一种基于双向长短期记忆神经网络(Bi-directional long short-term memory,Bi-LSTM)的岩相预测方法,综合利用测井和地震数据进行高效准确的岩相预测。通过合成地震记录,进行井震数据的时深匹配,以地震吸收衰减数据、纵波阻抗、密度和伽马拟声波阻抗作为输入,以岩相作为标签,通过Bi-LSTM模型训练建立输入数据与岩相的非线性映射关系。将该方法应用于四川某浅层河道砂体勘探区岩相预测,结果表明,基于Bi-LSTM构建的岩相预测方法优于普通循环神经网络和普通LSTM,能够快速确定地下岩相,有效指示河道。基于Bi-LSTM的岩相预测方法能有效提取输入数据与岩相信息的非线性映射关系,对少井地区的岩相预测工作有较高的实用价值。展开更多
受自然环境、计量仪器等影响,量测数据会出现异常,导致调度人员错误决策,威胁电力系统安全稳定运行。为保障电力系统安全稳定运行,提出了一种基于双向长短期记忆(bidirectional long short-term memory,Bi-LSTM)神经网络的配网电压无监...受自然环境、计量仪器等影响,量测数据会出现异常,导致调度人员错误决策,威胁电力系统安全稳定运行。为保障电力系统安全稳定运行,提出了一种基于双向长短期记忆(bidirectional long short-term memory,Bi-LSTM)神经网络的配网电压无监督异常数据检测方法。利用Bi-LSTM神经网络处理时序数据的双向特性,建立时序预测模型,通过对比预测值和实际值的误差检测异常数据。最后,基于某实际配网电压数据进行仿真验证,仿真结果表明:所提方法在准确率、F1分数等指标方面均优于决策树、K近邻、支持向量机、长短期记忆(long short-term memory,LSTM)神经网络。展开更多
文摘介绍一种基于双向长短期记忆神经网络(Bi-directional long short-term memory,Bi-LSTM)的岩相预测方法,综合利用测井和地震数据进行高效准确的岩相预测。通过合成地震记录,进行井震数据的时深匹配,以地震吸收衰减数据、纵波阻抗、密度和伽马拟声波阻抗作为输入,以岩相作为标签,通过Bi-LSTM模型训练建立输入数据与岩相的非线性映射关系。将该方法应用于四川某浅层河道砂体勘探区岩相预测,结果表明,基于Bi-LSTM构建的岩相预测方法优于普通循环神经网络和普通LSTM,能够快速确定地下岩相,有效指示河道。基于Bi-LSTM的岩相预测方法能有效提取输入数据与岩相信息的非线性映射关系,对少井地区的岩相预测工作有较高的实用价值。