期刊文献+
共找到510篇文章
< 1 2 26 >
每页显示 20 50 100
基于双向长短期记忆循环神经网络和条件随机场的钻井工况识别方法 被引量:1
1
作者 王海涛 王建华 +2 位作者 邱晨 毛金涛 李辉 《石油钻采工艺》 CAS 北大核心 2023年第5期540-547,554,共9页
传统钻井作业中,钻井工况主要通过基于机理模型与人工判断的方法进行识别,无法保证钻井工况识别的实时性与精准度。为此,采用近年来热门的人工智能算法,将井深与钻头位置的差、钻头位置、井深、大钩高度、大钩载荷、转速、钻压、扭矩、... 传统钻井作业中,钻井工况主要通过基于机理模型与人工判断的方法进行识别,无法保证钻井工况识别的实时性与精准度。为此,采用近年来热门的人工智能算法,将井深与钻头位置的差、钻头位置、井深、大钩高度、大钩载荷、转速、钻压、扭矩、排量共9项钻井参数作为输入特征项,训练调优并建立了基于双向长短期记忆循环神经网络和条件随机场的钻井工况智能识别模型,对复合钻进、滑动钻进、上提开泵划眼、下放开泵划眼、静止、坐卡、原地循环等共计20种钻机动态进行实时智能识别,训练集、测试集的正确率分别为96.49%、97.23%。该模型的成功建立,验证了人工智能算法的优越性,为人工智能算法在钻井工程领域的后续应用提供了丰富经验。 展开更多
关键词 钻井工况 智能识别 双向长短期记忆循环神经网络 条件随机场 深度学习
下载PDF
基于集群辨识和卷积神经网络-双向长短期记忆-时序模式注意力机制的区域级短期负荷预测 被引量:1
2
作者 陈晓梅 肖徐东 《现代电力》 北大核心 2024年第1期106-115,共10页
为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力... 为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力机制(temporal pattern attention,TPA)的预测方法。首先,将用电模式和天气作为影响因素,基于二阶聚类算法对区域内的负荷节点进行集群辨识,再从每个集群中挑选代表特征作为深度学习模型的输入,这样既能减少输入特征维度,降低计算复杂度,又能综合考虑预测区域的整体特征,提升预测精度。然后,针对区域电力负荷时序性的特点,用CNN-BiLSTM-TPA模型完成训练和预测,该模型能提取输入数据的双向信息生成隐状态矩阵,并对隐状态矩阵的重要特征加权,从多时间步上捕获双向时序信息用于预测。最后,在美国加利福尼亚州实例上分析验证了所提方法的有效性。 展开更多
关键词 短期电力负荷预测 双向长短期记忆网络 时序模式注意力机制 集群辨识 卷积神经网络
下载PDF
基于残差神经网络、双向长短期记忆网络和注意力机制的肠鸣音检测方法研究
3
作者 郝亚丽 万显荣 +3 位作者 江从庆 任相海 张小明 翟详 《中国医疗器械杂志》 2024年第5期498-504,共7页
肠鸣音可以反映胃肠道的运动和健康状况,然而,传统的人工听诊方式存在主观性偏差且耗时耗力。为了更好地辅助医生对肠鸣音的诊断,提高肠鸣音检测的可靠性和高效性,该研究提出了一种结合残差神经网络(ResNet)、双向长短期记忆网络(BiLSTM... 肠鸣音可以反映胃肠道的运动和健康状况,然而,传统的人工听诊方式存在主观性偏差且耗时耗力。为了更好地辅助医生对肠鸣音的诊断,提高肠鸣音检测的可靠性和高效性,该研究提出了一种结合残差神经网络(ResNet)、双向长短期记忆网络(BiLSTM)和注意力机制的深度神经网络模型。首先使用自主研发的多通道肠鸣音采集系统采集了大量带标签的临床数据,采用多尺度小波分解和重构方法对肠鸣音信号进行预处理,然后提取对数梅尔谱图特征送入网络进行训练,最后通过10折交叉验证和消融实验来评估模型的性能和验证其有效性。实验结果表明,该模型在精确率、召回率和F1分数方面分别达到了83%、76%和79%,能够有效地检测出肠鸣音片段并定位其起止时间,表现优于以往的算法。该算法不仅可以为医生在临床实践中提供辅助信息,还为肠鸣音的进一步分析和研究提供了技术支撑。 展开更多
关键词 肠鸣音 残差神经网络 双向长短期记忆网络 注意力机制
下载PDF
基于贝叶斯优化-卷积神经网络-双向长短期记忆神经网络的锂电池健康状态评估
4
作者 衣思彤 刘雅浓 +2 位作者 马耀浥 李文婕 孔航 《电气技术》 2024年第5期1-10,21,共11页
准确估计电池健康状态是设备稳定运行的关键。针对当前健康状态研究中容量难以直接测量、估计模型调参费时等问题,提出基于多健康特征的贝叶斯优化(BO)算法优化卷积神经网络(CNN)与双向长短期记忆(BiLSTM)神经网络预测模型。基于NASA公... 准确估计电池健康状态是设备稳定运行的关键。针对当前健康状态研究中容量难以直接测量、估计模型调参费时等问题,提出基于多健康特征的贝叶斯优化(BO)算法优化卷积神经网络(CNN)与双向长短期记忆(BiLSTM)神经网络预测模型。基于NASA公开锂电池数据,提取3种健康特征。将CNN与BiLSTM结合,提高时间序列数据处理能力,加入BO算法自动搜寻最优参数集,避免组合网络模型陷入局部最优,从而减少评估时间。对比分析相关神经网络模型,结果表明所提方法预测准确度最高,可有效估计锂电池的健康状态,平均绝对误差和方均根误差均在1%以内。 展开更多
关键词 锂电池 健康状态(SOH) 贝叶斯优化(BO)算法 卷积神经网络(CNN) 双向长短期记忆(BiLSTM)神经网络
下载PDF
基于联合注意力机制和一维卷积神经网络-双向长短期记忆网络模型的流量异常检测方法 被引量:9
5
作者 尹梓诺 马海龙 胡涛 《电子与信息学报》 EI CSCD 北大核心 2023年第10期3719-3728,共10页
针对流量数据集中类别不平衡限制了分类模型对少数类攻击流量的检测性能这一问题,该文提出一种基于联合注意力机制和1维卷积神经网络-双向长短期记忆网络(1DCNN-BiLSTM)模型的流量异常检测方法。首先在数据预处理过程中利用BorderlineSM... 针对流量数据集中类别不平衡限制了分类模型对少数类攻击流量的检测性能这一问题,该文提出一种基于联合注意力机制和1维卷积神经网络-双向长短期记忆网络(1DCNN-BiLSTM)模型的流量异常检测方法。首先在数据预处理过程中利用BorderlineSMOTE方法对流量数据不平衡训练样本预处理,使得各类流量数据均衡,有助于后续模型对各类数据的充分训练。然后设计联合注意力机制和1DCNN-BiLSTM的模型对流量数据进行训练,提取流量数据的局部和长距离序列特征并进行分类,通过注意力机制将对分类有用的特征按其重要性赋予权值,提高对少数攻击类的检出率。实验结果表明,同几种现有方法相比,该文方法对NSL-KDD和CICIDS2017数据集的检测准确率最高(可达93.17%和98.65%),对NSL-KDD数据集中的提权攻击(U2R)攻击流量的检出率至少提升13.70%,证明了该文方法提升少数类攻击流量检出率的有效性。 展开更多
关键词 流量异常检测 类别不平衡 一维卷积神经网络-双向长短期记忆网络 注意力机制
下载PDF
应用长短期记忆循环神经网络的弱反射信号增强方法
6
作者 隋京坤 陈胜 +1 位作者 郑晓东 胡天跃 《石油地球物理勘探》 EI CSCD 北大核心 2023年第1期1-8,共8页
由于沉积环境的特殊性和复杂性,地下介质中不同反射界面的波阻抗差可能差异巨大。如果储层的有效反射信息较弱,在地震数据中极可能被强反射信息掩盖,不易被识别,影响了储层识别效果,因此亟需一种解释性处理技术突出弱反射信息。常规方... 由于沉积环境的特殊性和复杂性,地下介质中不同反射界面的波阻抗差可能差异巨大。如果储层的有效反射信息较弱,在地震数据中极可能被强反射信息掩盖,不易被识别,影响了储层识别效果,因此亟需一种解释性处理技术突出弱反射信息。常规方法一般是先从地震数据中分离出强反射分量,再将它削弱或删除。但如果地震子波提取不准确,减去法中强反射残留会引入虚假信号。文中提出了一种“升弱降强”的新思路,通过构建幂次反射系数映射模型缩小弱反射信号与强反射信号的相对差异。首先计算测井反射系数的幂次反射系数,将弱反射系数相对增大、强反射系数相对减小,得到拟反射系数序列;再用原始反射系数序列和拟反射系数序列分别与地震子波进行褶积运算,得到合成地震记录和拟合成地震记录,生成训练样本集;然后用该样本集训练长短期记忆(LSTM)循环神经网络,建立合成地震记录与拟合成地震记录的映射关系;最后将该网络应用于地震数据,增强了地震弱反射信号。模型和实际数据应用结果表明,该方法能有效增强地层本身引起的弱反射信号,提高地震数据的储层识别能力。 展开更多
关键词 拟反射系数 长短期记忆(LSTM)循环神经网络 弱反射信号增强
下载PDF
基于时空注意力机制的双向长短期记忆神经网络的股指预测研究
7
作者 杨蓦 王静 《运筹与管理》 CSCD 北大核心 2023年第8期174-180,共7页
股票市场是一个高噪音的混沌系统,其外部属性之间的相关性问题以及在长期预测时外部影响对股价波动的加剧,导致对股票市场进行准确预测是一项富有挑战性的工作。为解决上述问题,本文利用基于注意力机制的双向长短期记忆神经网络(BiLSTM... 股票市场是一个高噪音的混沌系统,其外部属性之间的相关性问题以及在长期预测时外部影响对股价波动的加剧,导致对股票市场进行准确预测是一项富有挑战性的工作。为解决上述问题,本文利用基于注意力机制的双向长短期记忆神经网络(BiLSTM)对香港地区恒生指数收盘价进行有效性的实证检验。其中,空间注意力机制用于捕捉输入指标之间的相关性并为其赋予区别权重,时间注意力机制用于描述数据的时间相关性以解决长期预测中的时间依赖问题并为时间步赋予区别权重,BiLSTM神经网络用于拟合数据并构建预测模型。本文还比较了四种基于注意力机制的神经网络方法和六种基线方法,实验结果表明,与当下流行的股票指数预测方法相比,基于双维度注意力机制的BiLSTM可以在短、中、长期预测中均实现更准确的股票指数收盘价预测。 展开更多
关键词 注意力机制 双向长短期记忆神经网络 股票指数预测 长期预测 时空关系
下载PDF
一种基于双向长短期记忆神经网络的Web攻击检测 被引量:1
8
作者 江一民 罗星宇 +2 位作者 于淼 刘月铧 张玉彬 《信息对抗技术》 2023年第1期55-65,共11页
当前,网络空间安全形势日益严重,这是因为网络攻击手段层出不穷。其中,跨站脚本(cross-site scripting,XSS)攻击和结构化查询语言(structured query language,SQL)注入攻击是2种较为常见的网络攻击方式。由于它们的有效载荷样式多样,导... 当前,网络空间安全形势日益严重,这是因为网络攻击手段层出不穷。其中,跨站脚本(cross-site scripting,XSS)攻击和结构化查询语言(structured query language,SQL)注入攻击是2种较为常见的网络攻击方式。由于它们的有效载荷样式多样,导致传统的基于规则的检测以及基于特征的机器学习难以对其进行检测。为了提高对Web攻击的检测效果,降低人工提取特征的繁杂度,提出了一种基于双向长短期记忆神经网络的Web攻击检测方法:使用字符向量化提取Web攻击有效特征的序列,并映射到特征向量,嵌入向量到神经网络中,然后使用双向长短期记忆递归神经网络训练和测试模型。结果表明,该检测方法在真实数据集中的检测准确率达到99.35%,召回率达到99.49%,可以同时检测XSS攻击和SQL注入攻击。证明了这种基于深度学习的检测方法可以较大规模地应用于Web攻击感知平台中。 展开更多
关键词 XSS攻击 SQL注入攻击 双向长短期记忆神经网络 Web安全漏洞 深度学习
下载PDF
基于LSTM循环神经网络的船舶运动极短期预报
9
作者 张怡 孟帅 +1 位作者 刘震 封培元 《船舶工程》 CSCD 北大核心 2024年第5期33-40,55,共9页
长短期记忆(LSTM)循环神经网络对于预报非线性时间序列有优势,尝试将LSTM网络应用于船舶运动极短期预报。利用某破冰船在北冰洋航行时两段典型海况下的横摇和纵摇运动实测数据,探究LSTM神经网络模型的预报精度和有效时长。研究发现,LST... 长短期记忆(LSTM)循环神经网络对于预报非线性时间序列有优势,尝试将LSTM网络应用于船舶运动极短期预报。利用某破冰船在北冰洋航行时两段典型海况下的横摇和纵摇运动实测数据,探究LSTM神经网络模型的预报精度和有效时长。研究发现,LSTM神经网络模型在海况良好、船舶的运动周期性强且主导频率突出时可以取得满意预报效果。但随着时长的增加,误差会不断累积,精确度逐步降低。在编码器-解码器逐步迭代框架基础上利用多层感知机提出直接多步预报改进模型。研究发现,改进模型可以有效减少误差积累、提高预报精度和延长有效时间,尤其在恶劣海况下预报结果改善更为显著。研究成果可以为基于神经网络开发高效准确的船舶运动极短期预报方法提供参考。 展开更多
关键词 短期预报 长短期记忆循环神经网络 直接多步预报 误差积累
下载PDF
基于循环神经网络的GDP预测研究与分析
10
作者 白斌丽 吴年祥 《安徽水利水电职业技术学院学报》 2024年第1期85-90,共6页
GDP(Gross Domestic Product)和人均GDP是一个国家经济实力的标志性指标,反映一个国家经济发展状况。通过世界银行提供各国1976年以来的GDP和人均GDP数据对LSTM(Long Short-Term Memory)网络进行了训练,用训练好的LSTM网络对6个国家的人... GDP(Gross Domestic Product)和人均GDP是一个国家经济实力的标志性指标,反映一个国家经济发展状况。通过世界银行提供各国1976年以来的GDP和人均GDP数据对LSTM(Long Short-Term Memory)网络进行了训练,用训练好的LSTM网络对6个国家的人均GDP进行了预测。通过对预测值和实际值的比较,结果显示LSTM网络对人均GDP的预测效果明显优于传统的统计学方法。 展开更多
关键词 人均GDP 深度学习 循环神经网络 长短期记忆网络
下载PDF
基于改进多尺度卷积循环神经网络的滚动轴承故障研究
11
作者 董绍江 黄翔 +1 位作者 夏宗佑 邹松 《振动与冲击》 EI CSCD 北大核心 2024年第20期94-105,共12页
针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memo... 针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络融合的迁移学习故障诊断方法。该方法首先应用不同尺寸池化层和卷积核捕获振动信号的多尺度特征;然后引入多头自注意力机制自动地给予特征序列中的不同部分不同的权重,进一步加强特征表示的能力;其次利用BiLSTM结构引入双向性质提取特征前后之间的内部关系实现信息的逐层传递;最后利用多核最大均值差异减小源域和目标域在预训练模型中各层上的概率分布差异并利用少量标记的目标域数据再对模型进行训练。试验结果表明,所提方法在江南大学(JNU)、德国帕德博恩大学(PU)公开轴承数据集上平均准确率分别为98.43%和97.66%,该方法在重庆长江轴承股份有限公司自制的轴承故障数据集上也表现出了极高的准确率和较快的收敛速度,为有效诊断振动旋转部件故障提供了实际依据。 展开更多
关键词 故障诊断 多尺度卷积神经网络 双向长短期记忆(BiLSTM)网络 多头自注意力 多核最大均值差异
下载PDF
基于循环神经网络的工程专业语义智能分析方法研究
12
作者 师玲萍 《电子设计工程》 2024年第2期36-40,共5页
针对传统翻译方法学习能力差、翻译质量较低的问题,提出了一种基于循环神经网络的专业英语机器翻译方法。该方法以编码器-解码器为模型框架,利用改进的循环卷积神经网络对输入数据加以训练。同时编码器使用多头注意力机制对输入数据进... 针对传统翻译方法学习能力差、翻译质量较低的问题,提出了一种基于循环神经网络的专业英语机器翻译方法。该方法以编码器-解码器为模型框架,利用改进的循环卷积神经网络对输入数据加以训练。同时编码器使用多头注意力机制对输入数据进行共同训练,进而使算法兼具局部与全局特性。解码器单层则采用三子层结构,分别为多头注意力子层、上下文信息子层及全连接子层,可保证句子翻译的流畅性。在实验测试中,所提算法的BLEU值与其他算法相比提升了2.7;而在专业语料翻译测试中,相较于网络翻译,该算法的准确性和流畅度均更优,由此表明其性能较好,具有一定的工程应用价值。 展开更多
关键词 翻译方法 循环神经网络 编码器 解码器 多头注意力机制 长短期记忆网络
下载PDF
一种在线医疗社区问答文本实体识别方法——基于卷积神经网络和双向长短期记忆神经网络 被引量:4
13
作者 廖开际 邹珂欣 席运江 《科技管理研究》 CSSCI 北大核心 2021年第8期173-179,共7页
针对在线医疗社区问答文本复杂程度高、结构化程度低的特点,结合卷积神经网络(CNN)和双向长短期记忆神经网络(BiLSTM)两种深度学习模型以及条件随机场(CRF)模型,提出一套适用于在线医疗问答文本的实体识别方法并进行验证。将问答文本进... 针对在线医疗社区问答文本复杂程度高、结构化程度低的特点,结合卷积神经网络(CNN)和双向长短期记忆神经网络(BiLSTM)两种深度学习模型以及条件随机场(CRF)模型,提出一套适用于在线医疗问答文本的实体识别方法并进行验证。将问答文本进行清洗和BIO标注后,分别用CNN和BiLSTM进行字级别的特征抽取,将通过两种模型抽取到的特征进行融合后放入CRF中训练出实体预测模型,再将问答文本放入训练好的模型中,得到最终的实体识别结果。以关于乳腺癌疾病问答文本为例,研究结果表明,运用该方法得到的识别结果优于其他模型,且识别准确率达到92.3%、召回率达到89.3%、F值达到90.8%。 展开更多
关键词 实体识别 深度学习 卷积神经网络 双向长短期记忆神经网络 条件随机场
下载PDF
基于长短期记忆循环神经网络的AGC实时控制策略 被引量:14
14
作者 李滨 王靖德 +1 位作者 梁水莹 韦昌福 《电力自动化设备》 EI CSCD 北大核心 2022年第3期128-134,共7页
大量新能源的接入以及电网中冲击负荷数量的剧增,使得电网对自动发电控制(AGC)策略提出了新的要求。简化AGC的一般控制流程,对比不同AGC策略的控制特性,在每个考核周期内选择控制效果更优的控制策略,并充分发挥多种控制策略在各自优势... 大量新能源的接入以及电网中冲击负荷数量的剧增,使得电网对自动发电控制(AGC)策略提出了新的要求。简化AGC的一般控制流程,对比不同AGC策略的控制特性,在每个考核周期内选择控制效果更优的控制策略,并充分发挥多种控制策略在各自优势工况下的性能,以得到优秀控制数据集;在此基础上,以长短期记忆(LSTM)循环神经网络为神经元构建AGC策略深度学习模型,并提出一种基于LSTM循环神经网络的数据驱动型AGC实时控制策略。仿真结果表明,基于深度学习的控制策略的整体性能优于任何单一控制策略。 展开更多
关键词 自动发电控制 控制策略 深度学习 长短期记忆循环神经网络 数据驱动
下载PDF
基于双向长短期记忆神经网络的水平地应力预测方法 被引量:6
15
作者 马天寿 向国富 +2 位作者 石榆帆 桂俊川 张东洋 《石油科学通报》 2022年第4期487-504,共18页
水平地应力是井壁稳定分析和水力压裂改造的关键基础参数,但深部地层地质环境复杂且隐蔽,使得水平地应力的准确快速预测难度较大。考虑到传统测井解释和神经网络模型难以描述测井数据与地应力之间的空间相关性,提出采用一种基于双向长... 水平地应力是井壁稳定分析和水力压裂改造的关键基础参数,但深部地层地质环境复杂且隐蔽,使得水平地应力的准确快速预测难度较大。考虑到传统测井解释和神经网络模型难以描述测井数据与地应力之间的空间相关性,提出采用一种基于双向长短期记忆神经网络(BiLSTM)的水平地应力预测方法;以四川盆地CL气田两口直井为例,将两口直井分别作为训练井和测试井,通过训练井建立测井参数与地应力之间的非线性映射关系,实现对测试井水平地应力的预测;结合测井参数相关性和实际地质含义,分析了不同测井参数组合模式下水平地应力的预测效果。研究结果表明:(1)对比测井解释和岩心差应变测试结果发现,垂向地应力测井解释误差为0.39%,最大水平地应力测井解释误差为0.18%~0.64%,最小水平地应力测井解释误差为0.29%,说明测井解释与实际地应力吻合较好;(2)工区地应力大小排序为垂向地应力>最大水平地应力>最小水平地应力,属于潜在正断层应力状态;(3)水平地应力与垂深、密度和自然伽马呈较强的正相关关系,与纵波时差、井径、补偿中子和横波时差呈负相关关系;(4)不同的测井参数组合对水平地应力的预测效果不同,其中最优的测井参数组合为垂深、井径、密度、补偿中子、自然伽马、纵波时差;(5)通过正交设计实验,确定了最优超参数取值方案,其预测得到的最大和最小水平地应力平均绝对百分比误差分别为0.48‰和0.50‰。结论认为,BiLSTM模型能够有效捕捉测井参数随深度的变化趋势和测井参数的前后关联信息,可以实现水平地应力的精准预测。 展开更多
关键词 地应力 水平地应力 长短期记忆神经网络 双向长短期记忆神经网络 测井
下载PDF
基于循环神经网络模型的创伤重症患者临床结局的动态预测
16
作者 齐戈尧 徐进 金志超 《海军军医大学学报》 CAS CSCD 北大核心 2024年第10期1241-1249,共9页
目的 探讨基于循环神经网络(RNN)算法构建的动态预测模型用于创伤重症患者临床结局动态预测的价值,并研究动态策略和实时预测模型可行的搭建方案及路径。方法 本研究数据来源于美国重症监护医学信息数据库(MIMIC)-Ⅳ2.0。以创伤重症患... 目的 探讨基于循环神经网络(RNN)算法构建的动态预测模型用于创伤重症患者临床结局动态预测的价值,并研究动态策略和实时预测模型可行的搭建方案及路径。方法 本研究数据来源于美国重症监护医学信息数据库(MIMIC)-Ⅳ2.0。以创伤重症患者院内结局为预测目标,使用长短时记忆(LSTM)和门控循环单元(GRU)2种RNN算法分别在4、6和8 h时间窗下训练动态预测模型。使用灵敏度、特异度、F1值和AUC值对模型性能进行评价,并分析不同RNN算法和时间窗对模型性能的影响。在8 h时间窗下分别训练隐马尔科夫模型(HMM)、随机森林(RF)模型和logistic模型作为对照,横向比较2种RNN算法模型与对照模型的性能指标,并分析各模型的时间趋势变化。结果 在不同时间窗时,RNN动态模型在灵敏度、特异度、F1值和AUC值等4个性能指标上差异均有统计学意义(均P<0.001),在8 h时间窗时模型的各性能指标均高于6 h和4 h时;不同RNN算法(LSTM和GRU)间仅特异度差异有统计学意义(P=0.036)。横向比较结果显示,2种RNN算法模型和其他模型间各性能指标差异均有统计学意义(均P<0.001),2种RNN算法模型各指标均高于HMM、RF和logistic模型;各算法模型灵敏度、特异度和F1值的ICC均小于0.400(95% CI未包含0),而AUC值的ICC在统计学上证据不足(95% CI包含0)。结论 基于RNN算法的动态模型对创伤重症患者临床结局的预测效果较其他常见模型具有一定优势,且时间窗对模型性能可能存在影响。 展开更多
关键词 循环神经网络 长短期记忆网络 门控循环单元 创伤 动态模型 临床结局 预测模型
下载PDF
基于双向长短期记忆神经网络的老挝语分词方法 被引量:17
17
作者 何力 周兰江 +1 位作者 周枫 郭剑毅 《计算机工程与科学》 CSCD 北大核心 2019年第7期1312-1317,共6页
作为语言最小独立运行且有意义的单位,将连续型的老挝语划分成词是非常有必要的。提出一种基于双向长短期记忆BLSTM神经网络模型的老挝语分词方法,使用包含913 487个词的人工分词语料来训练模型,将老挝语分词任务转化为基于音节的序列... 作为语言最小独立运行且有意义的单位,将连续型的老挝语划分成词是非常有必要的。提出一种基于双向长短期记忆BLSTM神经网络模型的老挝语分词方法,使用包含913 487个词的人工分词语料来训练模型,将老挝语分词任务转化为基于音节的序列标注任务,即将老挝语音节标注为词首(B)、词中(M)、词尾(E)和单独成词(S)4个标签。首先将老挝语句子划分成音节并训练成向量,然后把这些向量作为BLSTM神经网络模型的输入来预估该音节所属标签,再使用序列推断算法确定其标签,最后使用人工标注的分词语料进行实验。实验表明,基于双向长短期记忆神经网络的老挝语分词方法在准确率上达到了87.48%,效果明显好于以往的分词方法。 展开更多
关键词 神经网络 音节 双向长短期记忆 老挝语分词
下载PDF
基于双向长短期记忆神经网络的岩相预测方法 被引量:9
18
作者 熊玄辰 曹俊兴 +2 位作者 周鹏 许汉卿 程明 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第2期226-234,共9页
介绍一种基于双向长短期记忆神经网络(Bi-directional long short-term memory,Bi-LSTM)的岩相预测方法,综合利用测井和地震数据进行高效准确的岩相预测。通过合成地震记录,进行井震数据的时深匹配,以地震吸收衰减数据、纵波阻抗、密度... 介绍一种基于双向长短期记忆神经网络(Bi-directional long short-term memory,Bi-LSTM)的岩相预测方法,综合利用测井和地震数据进行高效准确的岩相预测。通过合成地震记录,进行井震数据的时深匹配,以地震吸收衰减数据、纵波阻抗、密度和伽马拟声波阻抗作为输入,以岩相作为标签,通过Bi-LSTM模型训练建立输入数据与岩相的非线性映射关系。将该方法应用于四川某浅层河道砂体勘探区岩相预测,结果表明,基于Bi-LSTM构建的岩相预测方法优于普通循环神经网络和普通LSTM,能够快速确定地下岩相,有效指示河道。基于Bi-LSTM的岩相预测方法能有效提取输入数据与岩相信息的非线性映射关系,对少井地区的岩相预测工作有较高的实用价值。 展开更多
关键词 深度学习 循环神经网络 双向长短期记忆神经网络 岩相预测
下载PDF
基于改进一维卷积和双向长短期记忆神经网络的故障诊断方法 被引量:9
19
作者 董永峰 孙跃华 +2 位作者 高立超 韩鹏 季海鹏 《计算机应用》 CSCD 北大核心 2022年第4期1207-1215,共9页
针对工业领域中故障诊断数据存在时序性和夹杂强噪声的特点导致的收敛速度慢以及诊断精度低的问题,提出了一种基于改进一维卷积和双向长短期记忆(1DCNN-BiLSTM)神经网络融合的故障诊断方法。该方法包括故障振动信号的预处理、特征的自... 针对工业领域中故障诊断数据存在时序性和夹杂强噪声的特点导致的收敛速度慢以及诊断精度低的问题,提出了一种基于改进一维卷积和双向长短期记忆(1DCNN-BiLSTM)神经网络融合的故障诊断方法。该方法包括故障振动信号的预处理、特征的自动提取以及振动信号的分类。首先,采用自适应白噪声的完整经验模态分解(CEEMDAN)技术对原始振动信号进行预处理;其次,构建1DCNN-BiLSTM双通道模型,将处理后信号输入双向长短期记忆(BiLSTM)神经网络模型和一维卷积神经网络(1DCNN)模型两个通道,从而对信号的时序相关性特征、局部空间的非相关性特征和弱周期性规律进行充分提取;然后,针对信号夹杂强噪声的问题,对压缩与激励网络(SENet)模块进行改进并将其作用于两个不同的通道;最后,输入全连接层将双通道提取的特征进行融合并借助Softmax分类器实现对设备故障的精确识别。使用凯斯西储大学轴承数据集进行实验,结果表明改进后的SENet模块同时作用于1DCNN通道和stacked BiLSTM通道,1DCNN-BiLSTM双通道模型在保证快速收敛的情况下有最高诊断精度96.87%,优于传统单通道模型,有效提高了机械设备故障诊断效率。 展开更多
关键词 注意力机制 一维卷积神经网络 双向长短期记忆神经网络 双通道 故障诊断
下载PDF
基于长短期记忆循环神经网络的伊拉克H油田碳酸盐岩储层渗透率测井评价 被引量:5
20
作者 杨旺旺 张冲 +3 位作者 杨梦琼 张亚男 汪明锐 孙康 《大庆石油地质与开发》 CAS CSCD 北大核心 2022年第1期126-133,共8页
伊拉克H油田碳酸盐岩储层孔隙结构复杂,孔隙类型多样,给渗透率测井评价工作带来了极大困难。针对这一问题,建立了基于测井序列信息的长短期记忆(LSTM)循环神经网络渗透率预测模型。从测井响应差异以及测井序列信息出发,优选敏感测井曲线... 伊拉克H油田碳酸盐岩储层孔隙结构复杂,孔隙类型多样,给渗透率测井评价工作带来了极大困难。针对这一问题,建立了基于测井序列信息的长短期记忆(LSTM)循环神经网络渗透率预测模型。从测井响应差异以及测井序列信息出发,优选敏感测井曲线,搭建LSTM循环神经网络,训练网络并优化网络参数,建立了基于LSTM循环神经网络的伊拉克H油田碳酸盐岩储层渗透率预测模型。应用该模型对伊拉克H油田进行渗透率测井评价,并将预测结果与灰色系统预测模型GM(0,N)进行对比。结果表明:相对于灰色系统预测模型的结果,基于LSTM循环神经网络的渗透率预测模型的均方根误差降低了29.47%,皮尔逊(Pearson)相关系数提高了6.59%,取得了较好的应用效果。该模型能够充分挖掘测井曲线与渗透率之间关系的信息,提升了储层渗透率评价精度。 展开更多
关键词 长短期记忆循环神经网络 伊拉克H油田碳酸盐岩储层 渗透率 测井评价
下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部