Abstract: Let Ω belong to R^N be a smooth bounded domain such that 0 ∈ Ω, N ≥ 5, 2^* :2N/N-4 is the critical Sobolev exponent, and f(x) is a given function. By using the variational methods, the paper proves ...Abstract: Let Ω belong to R^N be a smooth bounded domain such that 0 ∈ Ω, N ≥ 5, 2^* :2N/N-4 is the critical Sobolev exponent, and f(x) is a given function. By using the variational methods, the paper proves the existence of solutions for the singular critical in the homogeneous problem △^u-μ u/{x}^4=|μ|^2*-2u+f(x) with Dirichlet boundary condition on 偏dΩ under some assumptions on f(x) and μ.展开更多
The twisted T -adic exponential sum associated with xd + λx is studied. If λ = 0, then an explicitarithmetic polygon is proved to be the Newton polygon of the C-function of the twisted T-adic exponential sum.It give...The twisted T -adic exponential sum associated with xd + λx is studied. If λ = 0, then an explicitarithmetic polygon is proved to be the Newton polygon of the C-function of the twisted T-adic exponential sum.It gives the Newton polygons of the L-functions of twisted p-power order exponential sums.展开更多
文摘Abstract: Let Ω belong to R^N be a smooth bounded domain such that 0 ∈ Ω, N ≥ 5, 2^* :2N/N-4 is the critical Sobolev exponent, and f(x) is a given function. By using the variational methods, the paper proves the existence of solutions for the singular critical in the homogeneous problem △^u-μ u/{x}^4=|μ|^2*-2u+f(x) with Dirichlet boundary condition on 偏dΩ under some assumptions on f(x) and μ.
基金supported by National Natural Science Foundation of China (Grant No.10671015)
文摘The twisted T -adic exponential sum associated with xd + λx is studied. If λ = 0, then an explicitarithmetic polygon is proved to be the Newton polygon of the C-function of the twisted T-adic exponential sum.It gives the Newton polygons of the L-functions of twisted p-power order exponential sums.