A dual-shell Si/TiO2/CFs composite was synthesized through a simple method to deal with the intrinsic drawbacks of silicon-based anode,in terms of huge volume change,unstable SEI films,and low electronic and ionic con...A dual-shell Si/TiO2/CFs composite was synthesized through a simple method to deal with the intrinsic drawbacks of silicon-based anode,in terms of huge volume change,unstable SEI films,and low electronic and ionic conductivity.The inner rigid TiO2 shell alleviates the huge volume expansion of the nano silicon,and the outer resilient carbon fiber,which is porous and staggered,is beneficial to the rapid transport of electrons and ions.The as-prepared Si/TiO2/CFs composite displays a superior reversible specific capacity of 583.4 mA·h/g,high rate capability and decent cycling performance.The dual-shell encapsulation method provides a guideline for other anode materials with huge volume expansion during the cycling process.展开更多
The ultimate bending moment and maximal shear stress of a bulk carrier with two structural forms (single hull and double hull/ are calculated separately by using the combined moment which is determined by stochastic ...The ultimate bending moment and maximal shear stress of a bulk carrier with two structural forms (single hull and double hull/ are calculated separately by using the combined moment which is determined by stochastic process. Then the assessment of reliability is carried out. The results indicate that by introducing the double-hull structure, the shear stress of side can be decreased to half of that of the primary structure( 50.7% i. but the effect on longitudinal strength is not obvious. Finally, the effects of different double-side skin widths on ultimate bending moment and the maximal shear stress are investigated, followed by proposals of the selection of the double-side skin width.展开更多
A general method was proposed to study the sound and vibration of a finite cylindrical shell with elastic theory. This method was developed through comprehensive analysis of the uncoupled Helmholtz equation obtained b...A general method was proposed to study the sound and vibration of a finite cylindrical shell with elastic theory. This method was developed through comprehensive analysis of the uncoupled Helmholtz equation obtained by the decomposition of elastic equations and the structure of the solution of a finite cylindrical shell analyzed by thin shell theory. The proposed method is theoretically suitable for arbitrary thickness of the shell and any frequency. Also, the results obtained through the method can be used to determine the range of application of the thin shell theory. Furthermore, the proposed method can deal with the problems limited by the thin shell theory. Additionally, the method can be suitable for several types of complex cylindrical shell such as the ring-stiffened cylindrical shell, damped cylindrical shell, and double cylindrical shell.展开更多
In the present work, analytical solutions for laminated composite doubly curved panels on rectangular plan form undergoing small deformations and subjected to uniformly distributed transverse load have been obtained. ...In the present work, analytical solutions for laminated composite doubly curved panels on rectangular plan form undergoing small deformations and subjected to uniformly distributed transverse load have been obtained. The problem is formulated using first order shear deformation theory. The spatial descretization of the linear differential equations is carried out using fast converging finite double Chebyshev series. The effect of panel thickness, curvature, boundary conditions, lamination scheme as well as material property on the static response of panel has been investigated in detail.展开更多
基金Project(51772331)supported by the National Natural Science Foundation of ChinaProject(2018YFB1106000)supported by the National Key Technologies R&D Program of China
文摘A dual-shell Si/TiO2/CFs composite was synthesized through a simple method to deal with the intrinsic drawbacks of silicon-based anode,in terms of huge volume change,unstable SEI films,and low electronic and ionic conductivity.The inner rigid TiO2 shell alleviates the huge volume expansion of the nano silicon,and the outer resilient carbon fiber,which is porous and staggered,is beneficial to the rapid transport of electrons and ions.The as-prepared Si/TiO2/CFs composite displays a superior reversible specific capacity of 583.4 mA·h/g,high rate capability and decent cycling performance.The dual-shell encapsulation method provides a guideline for other anode materials with huge volume expansion during the cycling process.
文摘The ultimate bending moment and maximal shear stress of a bulk carrier with two structural forms (single hull and double hull/ are calculated separately by using the combined moment which is determined by stochastic process. Then the assessment of reliability is carried out. The results indicate that by introducing the double-hull structure, the shear stress of side can be decreased to half of that of the primary structure( 50.7% i. but the effect on longitudinal strength is not obvious. Finally, the effects of different double-side skin widths on ultimate bending moment and the maximal shear stress are investigated, followed by proposals of the selection of the double-side skin width.
基金Supported by the National Natural Science Foundation of China under (Grant No. 40976058)
文摘A general method was proposed to study the sound and vibration of a finite cylindrical shell with elastic theory. This method was developed through comprehensive analysis of the uncoupled Helmholtz equation obtained by the decomposition of elastic equations and the structure of the solution of a finite cylindrical shell analyzed by thin shell theory. The proposed method is theoretically suitable for arbitrary thickness of the shell and any frequency. Also, the results obtained through the method can be used to determine the range of application of the thin shell theory. Furthermore, the proposed method can deal with the problems limited by the thin shell theory. Additionally, the method can be suitable for several types of complex cylindrical shell such as the ring-stiffened cylindrical shell, damped cylindrical shell, and double cylindrical shell.
文摘In the present work, analytical solutions for laminated composite doubly curved panels on rectangular plan form undergoing small deformations and subjected to uniformly distributed transverse load have been obtained. The problem is formulated using first order shear deformation theory. The spatial descretization of the linear differential equations is carried out using fast converging finite double Chebyshev series. The effect of panel thickness, curvature, boundary conditions, lamination scheme as well as material property on the static response of panel has been investigated in detail.