期刊文献+
共找到63篇文章
< 1 2 4 >
每页显示 20 50 100
双通道特征融合的真实场景点云语义分割方法 被引量:1
1
作者 孙刘杰 朱耀达 王文举 《计算机工程与应用》 CSCD 北大核心 2024年第12期160-169,共10页
真实场景点云不仅具有点云的空间几何信息,还具有三维物体的颜色信息,现有的网络无法有效利用真实场景的局部特征以及空间几何特征信息,因此提出了一种双通道特征融合的真实场景点云语义分割方法DCFNet(dual-channel feature fusion of ... 真实场景点云不仅具有点云的空间几何信息,还具有三维物体的颜色信息,现有的网络无法有效利用真实场景的局部特征以及空间几何特征信息,因此提出了一种双通道特征融合的真实场景点云语义分割方法DCFNet(dual-channel feature fusion of real scene for point cloud semantic segmentation)可用于不同场景下的室内外场景语义分割。更具体地说,为了解决不能充分提取真实场景点云颜色信息的问题,该方法采用上下两个输入通道,通道均采用相同的特征提取网络结构,其中上通道的输入是完整RGB颜色和点云坐标信息,该通道主要关注于复杂物体对象场景特征,下通道仅输入点云坐标信息,该通道主要关注于点云的空间几何特征;在每个通道中为了更好地提取局部与全局信息,改善网络性能,引入了层间融合模块和Transformer通道特征扩充模块;同时,针对现有的三维点云语义分割方法缺乏关注局部特征与全局特征的联系,导致对复杂场景的分割效果不佳的问题,对上下两个通道所提取的特征通过DCFFS(dual-channel feature fusion segmentation)模块进行融合,并对真实场景进行语义分割。对室内复杂场景和大规模室内外场景点云分割基准进行了实验,实验结果表明,提出的DCFNet分割方法在S3DIS Area5室内场景数据集以及STPLS3D室外场景数据集上,平均交并比(MIOU)分别达到71.18%和48.87%,平均准确率(MACC)和整体准确率(OACC)分别达到77.01%与86.91%,实现了真实场景的高精度点云语义分割。 展开更多
关键词 深度学习 通道特征融合 点云语义分割 注意力机制
下载PDF
基于依赖类型剪枝的双特征自适应融合网络用于方面级情感分析
2
作者 郑诚 石景伟 +1 位作者 魏素华 程嘉铭 《计算机科学》 CSCD 北大核心 2024年第3期205-213,共9页
现有的模型将基于依赖树的图神经网络用于方面级情感分析,一定程度上提升了模型的分类性能。然而,由于依赖解析技术的限制,语法解析结果的不精确导致依赖树存在大量噪声,使得模型的性能提升有限。此外,一些句子本身并不符合标准的句法... 现有的模型将基于依赖树的图神经网络用于方面级情感分析,一定程度上提升了模型的分类性能。然而,由于依赖解析技术的限制,语法解析结果的不精确导致依赖树存在大量噪声,使得模型的性能提升有限。此外,一些句子本身并不符合标准的句法结构。以往的研究以同样的置信度利用句法信息和语义信息,没有充分考虑它们对于确定方面词极性的贡献的不同,导致模型在相应的数据集上性能较差。为了克服这些困难,文中提出了一种基于依赖类型剪枝的双特征自适应融合网络。具体来说,该模型使用一种新型的混合方法,命名为依赖关系类型剪枝和邻接矩阵平滑,来缓解句法解析产生的噪声。此外,该模型通过双特征自适应融合模块充分考虑句子的句法信息的可用程度,以一种更灵活的方式将句法特征和语义特征结合起来用于方面级情感分析。在5个公开可用的数据集上进行广泛的实验,结果证明了该方法明显优于基线模型。 展开更多
关键词 方面级情感分析 图神经网络 依赖类型剪枝 特征自适应融合 深度学习 自然语言处理
下载PDF
双支路注意力特征融合的卷积稀疏编码目标检测
3
作者 杨昶楠 张振荣 +1 位作者 郑嘉利 曲勃源 《计算机工程与设计》 北大核心 2024年第4期1225-1232,共8页
针对现有目标检测模型在实际运用中会受到各种噪声的影响而导致性能退化的问题,提出一种双支路注意力特征融合(double branch attention feature fusion,DBAFF)的方法。基于CenterNet的结构设计,引入卷积稀疏编码(convolutional sparse ... 针对现有目标检测模型在实际运用中会受到各种噪声的影响而导致性能退化的问题,提出一种双支路注意力特征融合(double branch attention feature fusion,DBAFF)的方法。基于CenterNet的结构设计,引入卷积稀疏编码(convolutional sparse coding,CSC)去噪模块。通过双支路互补学习,自适应选择不同模态的有效信息,使融合特征达到最优化,有效解决该类模型的退化问题。实验结果表明,该方法在噪声数据集VOC-Nosiy上mAP50、mAP75、mAP性能分别达到了57.9%、29.8%、24.5%,检测速度FPS达到111帧,综合性能优于原网络和仅添加卷积稀疏编码的去噪网络。 展开更多
关键词 深度学习 目标检测 支路 卷积稀疏编码 互补学习 自适应 支路特征融合
下载PDF
双关系预测与特征融合的实体关系抽取模型
4
作者 沈健 夏鸿斌 刘渊 《智能系统学报》 CSCD 北大核心 2024年第2期462-471,共10页
现有分阶段解码的实体关系抽取模型仍存在着阶段间特征融合不充分的问题,会增大曝光偏差对抽取性能的影响。为此,提出一种双关系预测和特征融合的实体关系抽取模型(entity relation extraction model with dual relation prediction and... 现有分阶段解码的实体关系抽取模型仍存在着阶段间特征融合不充分的问题,会增大曝光偏差对抽取性能的影响。为此,提出一种双关系预测和特征融合的实体关系抽取模型(entity relation extraction model with dual relation prediction and feature fusion,DRPFF),该模型使用预训练的基于Transformer的双向编码表示模型(bidirectional encoder representation from transformers,BERT)对文本进行编码,并设计两阶段的双关系预测结构来减少抽取过程中错误三元组的生成。在阶段间通过门控线性单元(gated linear unit,GLU)和条件层规范化(conditional layer normalization,CLN)组合的结构来更好地融合实体之间的特征。在NYT和WebNLG这2个公开数据集上的试验结果表明,该模型相较于基线方法取得了更好的效果。 展开更多
关键词 实体关系抽取 关系三元组 预训练模型 关系预测 指针网络 特征融合 门控线性单元 条件规范化
下载PDF
双特征流融合和边界感知的显著性目标检测
5
作者 杨鑫 朱恒亮 毛国君 《计算机工程与应用》 CSCD 北大核心 2024年第10期227-236,共10页
显著性目标检测是计算机视觉领域的热门研究方向之一,许多基于深度学习的检测算法虽然已经取得了显著的成果,但是仍然存在待测目标漏检误检和边界模糊等问题。针对这些问题提出了一种基于双特征流融合和边界感知的目标检测算法,通过改... 显著性目标检测是计算机视觉领域的热门研究方向之一,许多基于深度学习的检测算法虽然已经取得了显著的成果,但是仍然存在待测目标漏检误检和边界模糊等问题。针对这些问题提出了一种基于双特征流融合和边界感知的目标检测算法,通过改变输入图像尺寸来丰富多尺度信息,并自顶向下逐层聚合特征得到精细的预测结果。首先将输入图像调整为两种不同分辨率分别送入编码器,提取丰富的多层级特征形成双特征流;其次将双特征流自顶向下逐层融合,生成由粗到细的显著图;最后构建了边界感知结构,凭借上下文语义信息的指导生成精细的物体轮廓。在五个公开数据集上进行了大量实验,实验结果表明,所提算法在结构相似性(Sm)等多个指标上取得了更高的检测精度,生成的显著图目标完整且边缘清晰。 展开更多
关键词 显著性目标检测 全卷积神经网络 多尺度学习 特征融合 边界感知
下载PDF
极端条件下基于特征层面信号融合的电励磁双凸极电机匝间短路故障诊断 被引量:1
6
作者 赵耀 沈翀 +2 位作者 李东东 林顺富 杨帆 《电工技术学报》 EI CSCD 北大核心 2023年第10期2661-2674,共14页
电励磁双凸极电机(WFDSM)具有结构简单、可靠性高等优点,适用于航空航天等环境恶劣领域。当发生小匝数短路故障时,由于其电流、振动等信号不会产生明显的变化,难以用传统的检测手段区分。因此,该文提出一种基于特征层面多源信号融合和... 电励磁双凸极电机(WFDSM)具有结构简单、可靠性高等优点,适用于航空航天等环境恶劣领域。当发生小匝数短路故障时,由于其电流、振动等信号不会产生明显的变化,难以用传统的检测手段区分。因此,该文提出一种基于特征层面多源信号融合和改进神经网络的WFDSM匝间短路故障诊断方法,用于诊断极端环境下WFDSM早期匝间短路故障。首先,对电流信号进行经验模态分解,获得本征模态函数,同时对振动信号进行小波包变换,并对分解后的各个频段提取峭度和裕度特征,同时计算能量占比;然后,将上述特征矩阵处理后输入改进卷积神经网络训练模型中;最后,通过实验表明,采取特征融合的计算方法诊断准确率可达98%,较数据层面和结果层面的融合计算方法准确率有明显的提升,并且对极端运行环境下的噪声,该方法具有很强的抗干扰能力。 展开更多
关键词 电励磁凸极电机 经验模态分解 特征融合 改进卷积神经网络 极端环境
下载PDF
基于三分支对抗学习和补偿注意力的红外和可见光图像融合
7
作者 邸敬 任莉 +2 位作者 刘冀钊 郭文庆 廉敬 《红外技术》 CSCD 北大核心 2024年第5期510-521,共12页
针对现有深度学习图像融合方法依赖卷积提取特征,并未考虑源图像全局特征,融合结果容易产生纹理模糊、对比度低等问题,本文提出一种基于三分支对抗学习和补偿注意力的红外和可见光图像融合方法。首先,生成器网络采用密集块和补偿注意力... 针对现有深度学习图像融合方法依赖卷积提取特征,并未考虑源图像全局特征,融合结果容易产生纹理模糊、对比度低等问题,本文提出一种基于三分支对抗学习和补偿注意力的红外和可见光图像融合方法。首先,生成器网络采用密集块和补偿注意力机制构建局部-全局三分支提取特征信息。然后,利用通道特征和空间特征变化构建补偿注意力机制提取全局信息,更进一步提取红外目标和可见光细节表征。其次,设计聚焦双对抗鉴别器,以确定融合结果和源图像之间的相似分布。最后,选用公开数据集TNO和RoadScene进行实验并与其他9种具有代表性的图像融合方法进行对比,本文提出的方法不仅获得纹理细节更清晰、对比度更好的融合结果,而且客观度量指标优于其他先进方法。 展开更多
关键词 红外可见光图像融合 局部-全局三分支 局部特征提取 补偿注意力机制 对抗学习 聚焦对抗鉴别器
下载PDF
基于加权特征融合与局部特征注意的人种分类
8
作者 董永峰 钟璨 +1 位作者 齐巧玲 李林昊 《计算机工程与设计》 北大核心 2024年第9期2683-2689,共7页
为充分利用浅层特征中的细节纹理信息对人种特性的描述能力,挖掘具有区分性部位的表达特征对人种分类的作用,更好利用数据不同层次的特征与区分性部位以提供更具鲁棒性的人种信息,提出一种基于加权特征融合与局部特征注意的人种分类模型... 为充分利用浅层特征中的细节纹理信息对人种特性的描述能力,挖掘具有区分性部位的表达特征对人种分类的作用,更好利用数据不同层次的特征与区分性部位以提供更具鲁棒性的人种信息,提出一种基于加权特征融合与局部特征注意的人种分类模型(weighted feature fusion and local feature attention model,WFLA)。模型设计加权特征融合模块增强浅层与深层特征的交互,构建局部特征注意模块重点关注区分性部位。在3个公开数据集中的大规模验证实验验证了WFLA模型在人种分类任务中具有明显优势。 展开更多
关键词 人种分类 注意力机制 融合 深度学习 局部特征 特征提取 特征交互
下载PDF
基于融合特征的CNN-Transformer墙体瓷砖粘贴空鼓检测算法
9
作者 赵响 丁勇 李登华 《现代电子技术》 北大核心 2024年第18期163-171,共9页
建筑墙体瓷砖粘贴空鼓的敲击检查方法是目前无损检测中应用最多的检测方法。为实现对复杂敲击位置下的识别和智能化检测,使用敲击法获取空鼓声音信号,提取连续小波变换(CWT)时频图和梅尔倒谱系数(MFCC)等时序特征。设计轻量化注意力CNN-... 建筑墙体瓷砖粘贴空鼓的敲击检查方法是目前无损检测中应用最多的检测方法。为实现对复杂敲击位置下的识别和智能化检测,使用敲击法获取空鼓声音信号,提取连续小波变换(CWT)时频图和梅尔倒谱系数(MFCC)等时序特征。设计轻量化注意力CNN-Transformer双分支网络GATRNet,提出一种基于门控机制的特征融合模块,对CWT时频图和融合时序特征分别提取深度特征并进行融合。试验结果表明,所提方法测试精度可达99.10%,特征融合模块能够充分融合多种特征;相较于机器学习和神经网络识别方法,GATRNet在面对复杂敲击位置的声音时,多样性评价指标明显较优异。 展开更多
关键词 分支网络 瓷砖粘贴空鼓检测 特征融合 敲击法 声音识别 深度学习
下载PDF
基于融合特征与卷积神经网络的耳鸣偏好音自动标注研究
10
作者 徐瑞阳 何培宇 +2 位作者 方安成 冯楚楠 潘帆 《生物医学工程研究》 2024年第4期338-343,共6页
在耳鸣声治疗中加入患者偏好音乐可有效改善耳鸣治疗效果。为满足患者个性化偏好的音乐需求,本研究提出了一种基于logMel与Hpcp融合特征的音乐自动标注新方法。该方法首先通过提取音乐的声学与乐理相关特征,然后输入双分支EfficientNetV... 在耳鸣声治疗中加入患者偏好音乐可有效改善耳鸣治疗效果。为满足患者个性化偏好的音乐需求,本研究提出了一种基于logMel与Hpcp融合特征的音乐自动标注新方法。该方法首先通过提取音乐的声学与乐理相关特征,然后输入双分支EfficientNetV2-s网络,进行音乐标注。经测试,本研究方法在MTAT数据集上的ROC-AUC值达到了0.9119,相较于其他音乐标注方法,标注性能有一定提升,对耳鸣偏好音选择具有一定的参考价值。 展开更多
关键词 耳鸣治疗 音乐标注 分支结构 特征融合 注意力机制 深度学习
下载PDF
结合双金字塔特征融合与级联定位的车牌检测 被引量:1
11
作者 张俊青 熊玉洁 +1 位作者 孙宪坤 高永彬 《计算机工程与应用》 CSCD 北大核心 2023年第2期240-252,共13页
为了解决复杂环境中不同因素干扰车牌检测精确度的问题,提出了一种基于双金字塔特征融合的复杂环境下车牌检测算法。通过采用Mish激活函数的残差网络(ResNet101-M)对输入图像进行初级特征提取;在传统特征金字塔网络(feature pyramid net... 为了解决复杂环境中不同因素干扰车牌检测精确度的问题,提出了一种基于双金字塔特征融合的复杂环境下车牌检测算法。通过采用Mish激活函数的残差网络(ResNet101-M)对输入图像进行初级特征提取;在传统特征金字塔网络(feature pyramid network,FPN)的基础上,提出了一种改进的双金字塔特征融合网络(siamese feature pyramid network,SFPN)。被提取的初级特征被送入该网络进行多层特征融合。融合后的特征被送入基于形状先验的锚点设置网络来确定感兴趣区域。将所生成的感兴趣区域送入级联定位网络从而得到准确的车牌检测结果。实验结果表明,该算法在AOLP与CCPD车牌数据集上均能够有效提升检测性能。 展开更多
关键词 车牌检测 深度学习 金字塔特征融合 级联定位
下载PDF
融合多层卷积特征的双视点手势识别技术研究 被引量:8
12
作者 张哲 孙瑾 杨刘涛 《小型微型计算机系统》 CSCD 北大核心 2019年第3期646-650,共5页
在人机交互技术领域,基于视觉的手部交互技术凭借其良好的舒适性和自然性被广泛研究和应用.手势识别是手势交互技术的核心内容之一.本文提出一种基于深度学习网络的识别方法,构建双视点网络框架,采用支持向量机对各视点下提取的特征进... 在人机交互技术领域,基于视觉的手部交互技术凭借其良好的舒适性和自然性被广泛研究和应用.手势识别是手势交互技术的核心内容之一.本文提出一种基于深度学习网络的识别方法,构建双视点网络框架,采用支持向量机对各视点下提取的特征进行分类识别,降低手势自遮挡的影响,提高识别精度;同时对各视点卷积网络,根据训练样本卷积特征的累计贡献率实现不同深度层的卷积特征的融合,补充深层网络丢失的浅层特征信息,增强特征鲁棒性.实验结果表明,较传统方法本文方法能有效提高手势识别准确率,同时基于预训练的学习方法能有效提高手势识别的时间效率. 展开更多
关键词 人机交互 手势识别 深度学习 卷积特征 视点深度学习网络 支持向量机分类器
下载PDF
双侧特征融合的乳腺肿块检测 被引量:6
13
作者 王之琼 王培 +1 位作者 于戈 康雁 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2015年第6期1024-1031,共8页
乳腺癌是妇女最常见的恶性肿瘤之一,面向乳腺钼靶X线图像的计算机辅助肿块检测技术可以帮助影像科医师早期发现乳腺病变.针对于单侧的乳腺肿块检测中准确率有待提升的问题,提出双侧特征融合的乳腺肿块检测算法.首先,进行图像预处理,并... 乳腺癌是妇女最常见的恶性肿瘤之一,面向乳腺钼靶X线图像的计算机辅助肿块检测技术可以帮助影像科医师早期发现乳腺病变.针对于单侧的乳腺肿块检测中准确率有待提升的问题,提出双侧特征融合的乳腺肿块检测算法.首先,进行图像预处理,并利用相干点漂移完成乳腺轮廓配准;然后,利用配准得到的变换矩阵获得双侧乳腺感兴趣区域,再在其中提取左右侧乳腺的单侧特征向量和双侧对比特征向量,从而建立融合的特征模型,并采用遗传选择算法对特征向量进行特征选择;最后利用极限学习机基于选择后的特征进行乳腺肿块检测.实验结果表明,与传统的基于单侧的乳腺肿块检测算法相比,文中算法能有效地提高检测准确率. 展开更多
关键词 特征融合 乳腺肿块检测 极限学习 钼靶X线图像
下载PDF
特征层双模态生物识别算法容侵能力评测方法 被引量:2
14
作者 王志芳 甄佳奇 +1 位作者 朱福珍 宋建华 《系统工程与电子技术》 EI CSCD 北大核心 2018年第8期1889-1896,共8页
相较于单模态生物识别技术,多模态生物识别技术具有更优的适用性、安全性和可靠性,成为目前生物识别技术发展的趋势。在多模态生物识别4种融合层次中,特征层融合能够提取更多的区分性信息,消除特征的冗余,在理论上可达到最佳识别效果。... 相较于单模态生物识别技术,多模态生物识别技术具有更优的适用性、安全性和可靠性,成为目前生物识别技术发展的趋势。在多模态生物识别4种融合层次中,特征层融合能够提取更多的区分性信息,消除特征的冗余,在理论上可达到最佳识别效果。然而,特征层多模态生物识别算法的安全性很少被关注。目前,多模态生物识别技术的研究多集中在双模态生物识别算法上,引入入侵容忍概念,定义了容侵能力度量,提出了容侵能力评测方法,评价特征层双模态生物识别算法的容侵能力,并对典型特征层双模态生物识别算法的安全性进行了评测。 展开更多
关键词 特征 模态生物识别 容侵能力 融合
下载PDF
多路径生成对抗网络的红外与可见光图像融合
15
作者 许光宇 陈浩宇 张杰 《国外电子测量技术》 2024年第3期18-27,共10页
生成对抗网络在红外与可见光图像融合领域受到广泛关注,但单路径进行融合容易丢失浅层信息、分支路特征提取融合能力有限。提出一种基于多路径生成对抗网络的红外与可见光图像融合方法。在生成器端,利用源图像与导向滤波结果构建3条输... 生成对抗网络在红外与可见光图像融合领域受到广泛关注,但单路径进行融合容易丢失浅层信息、分支路特征提取融合能力有限。提出一种基于多路径生成对抗网络的红外与可见光图像融合方法。在生成器端,利用源图像与导向滤波结果构建3条输入路径提取更多源图像特征信息,以获得细节更丰富的融合图像;然后,卷积层加入掩码注意力机制模块,提升显著信息的提取效率,引入密集连接和残差连接,在提升特征传递效率的同时可获取更多源图像重要特征信息。在鉴别器端,采用双鉴别器估计红外与可见光图像的区域分布,避免单鉴别器网络丢失对比度信息的模态失衡问题。在TNO数据集上进行了实验,实验结果表明,所提算法在5个客观评估指标上4项取得了最好结果,优于多数主流算法,在主观评估方面,所提算法保留了更多的纹理细节信息,具有更好的视觉效果。 展开更多
关键词 图像融合 生成对抗网络 特征提取 导向图像滤波 鉴别器
下载PDF
基于宽度学习方法的多模态信息融合 被引量:19
16
作者 贾晨 刘华平 +1 位作者 续欣莹 孙富春 《智能系统学报》 CSCD 北大核心 2019年第1期150-157,共8页
多模态机器学习通过有效学习各个模态的丰富特征来解决不同模态数据的融合问题。考虑到模态间的差异性,基于宽度学习方法提出了一个能够学习和融合两种模态特征的框架,首先利用宽度学习方法分别提取不同模态的抽象特征,然后将高维特征... 多模态机器学习通过有效学习各个模态的丰富特征来解决不同模态数据的融合问题。考虑到模态间的差异性,基于宽度学习方法提出了一个能够学习和融合两种模态特征的框架,首先利用宽度学习方法分别提取不同模态的抽象特征,然后将高维特征表示在同一个特征空间进行相关性学习,并通过非线性融合得到最后的特征表达,输入分类器进行目标识别。相关实验建立在康奈尔大学抓取数据集和华盛顿大学RGB-D数据集上,实验结果验证了相比于传统的融合方法,所提出的方法具有更好的稳定性和快速性。 展开更多
关键词 宽度学习方法 多模态融合 相关性分析 特征提取 非线性变换 目标识别 神经网络 RGB-D图像分类
下载PDF
双通道卷积神经网络在影像融合中的应用 被引量:1
17
作者 靳道明 李路沙 《地理空间信息》 2023年第11期1-4,共4页
利用Landsat8遥感卫星影像数据制作影像融合数据集,提出了一种双通道融合网络,并利用结果影像的质量指数对网络融合性能进行评估,分析与双三次卷积插值和GS影像融合方法的差异。结果表明,该网络加强了对高频空间信息的提取,在更高效提... 利用Landsat8遥感卫星影像数据制作影像融合数据集,提出了一种双通道融合网络,并利用结果影像的质量指数对网络融合性能进行评估,分析与双三次卷积插值和GS影像融合方法的差异。结果表明,该网络加强了对高频空间信息的提取,在更高效提取空间特征的同时,减弱了融合过程中对多光谱影像光谱特征的影响,从而提高了融合影像的综合影像质量(QNR=0.8852)。 展开更多
关键词 深度学习 遥感影像融合 通道卷积神经网络 多尺度特征
下载PDF
基于残差双注意力与跨级特征融合模块的静态手势识别 被引量:1
18
作者 吴佳璐 田秋红 岳金鸿 《计算机系统应用》 2022年第11期111-119,共9页
为解决卷积神经网络提取特征遗漏、手势多特征提取不充分问题,本文提出基于残差双注意力与跨级特征融合模块的静态手势识别方法.设计了一种残差双注意力模块,该模块对ResNet50网络提取的低层特征进行增强,能够有效学习关键信息并更新权... 为解决卷积神经网络提取特征遗漏、手势多特征提取不充分问题,本文提出基于残差双注意力与跨级特征融合模块的静态手势识别方法.设计了一种残差双注意力模块,该模块对ResNet50网络提取的低层特征进行增强,能够有效学习关键信息并更新权重,提高对高层特征的注意力,然后由跨级特征融合模块对不同阶段的高低层特征进行融合,丰富高级特征图中不同层级之间的语义和位置信息,最后使用全连接层的Softmax分类器对手势图像进行分类识别.本文在ASL美国手语数据集上进行实验,平均准确率为99.68%,相比基础ResNet50网络准确率提升2.52%.结果验证本文方法能充分提取与复用手势特征,有效提高手势图像的识别精度. 展开更多
关键词 手势图像识别 ResNet 残差注意力模块 跨级特征融合 深度学习
下载PDF
基于多层特征融合可调监督函数卷积神经网络的人脸性别识别 被引量:15
19
作者 石学超 周亚同 池越 《计算机应用研究》 CSCD 北大核心 2019年第3期940-944,共5页
为了进一步提高性别识别的准确率,提出了一种基于多层特征融合与可调监督函数机制结合的卷积神经网络(L-MFCNN)模型,并将之用于人脸性别识别。与传统卷积神经网络(CNN)不同,L-MFCNN将多个浅层中间卷积层特征输出与最后卷积层特征输出相... 为了进一步提高性别识别的准确率,提出了一种基于多层特征融合与可调监督函数机制结合的卷积神经网络(L-MFCNN)模型,并将之用于人脸性别识别。与传统卷积神经网络(CNN)不同,L-MFCNN将多个浅层中间卷积层特征输出与最后卷积层特征输出相结合,融合多层卷积层的特征,不仅利用了深层卷积的整体语义信息,还考虑了浅层卷积的细节局部纹理信息,使得性别识别更加准确。此外L-MFCNN还引入具有可调目标监督函数机制的large-margin softmax loss作为输出层,利用其调节不同的间隔(margin)的机制来有效引导深层卷积网络学习,使得同种性别间的类内间距更小,不同性别间的类间距更大,获得更好的性别识别效果。在多个人脸数据集上的性别识别实验结果表明,L-MFCNN的识别准确率要高于其他传统的卷积网络模型。L-MFCNN模型也为将来的人脸性别识别研究提供了新的思路与方向。 展开更多
关键词 人脸性别识别 特征融合 卷积神经网络 深度学习
下载PDF
融合坐标感知与混合提取的视网膜病变分级算法 被引量:1
20
作者 梁礼明 金家新 +1 位作者 冯耀 卢宝贺 《光电工程》 CAS CSCD 北大核心 2024年第1期43-54,共12页
针对糖尿病视网膜病变中存在样本分布不平衡和病灶区域特征识别困难等问题,提出一种融合坐标感知与混合提取的视网膜病变分级算法。该算法首先对视网膜输入图像进行裁剪、高斯滤波等预处理操作,以增强图像病变前景与噪声背景之间的差异... 针对糖尿病视网膜病变中存在样本分布不平衡和病灶区域特征识别困难等问题,提出一种融合坐标感知与混合提取的视网膜病变分级算法。该算法首先对视网膜输入图像进行裁剪、高斯滤波等预处理操作,以增强图像病变前景与噪声背景之间的差异度;然后由Res2Net-50和Densenet-121骨干网络组成的混合双模型将增强后的图像进行特征逐层提取,实现多尺度特征纹理的充分捕捉;再在混合双模型连接处融入多层坐标感知模块和注意力特征融合模块,达到剔除聚焦病灶特征干扰的目的,实现不同病灶语义间的权重重塑;最后利用组合损失函数缓解样本分布不均匀问题,进一步监督模型的训练与测试。该文算法在IDRID和APTOS 2019数据集上进行实验,二次加权系数分别为88.76%和90.29%;准确率分别为81.55%和84.42%,为视网膜病变分级智能辅助诊断提供了新窗口。 展开更多
关键词 视网膜病变分级 图像预处理 混合模型 坐标感知 特征融合
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部