The singular value decomposition problem is mathematically equivalent to the eigenproblem of an argumented matrix. Golub et al. give a bidiagonalization Lanczos method for computing a number of largest or smallest sin...The singular value decomposition problem is mathematically equivalent to the eigenproblem of an argumented matrix. Golub et al. give a bidiagonalization Lanczos method for computing a number of largest or smallest singular values and corresponding singular vertors, but the method may encounter some convergence problems. In this paper we analyse the convergence of the method and show why it may fail to converge. To correct this possible nonconvergence, we propose a refined bidiagonalization Lanczos method and apply the implicitly restarting technique to it, and we then present an implicitly restarted bidiagonalization Lanczos algorithm(IRBL) and an implicitly restarted refined bidiagonalization Lanczos algorithm (IRRBL). A new implicitly restarting scheme and a reliable and efficient algorithm for computing refined shifts are developed for this special structure eigenproblem.Theoretical analysis and numerical experiments show that IRRBL performs much better than IRBL.展开更多
文摘The singular value decomposition problem is mathematically equivalent to the eigenproblem of an argumented matrix. Golub et al. give a bidiagonalization Lanczos method for computing a number of largest or smallest singular values and corresponding singular vertors, but the method may encounter some convergence problems. In this paper we analyse the convergence of the method and show why it may fail to converge. To correct this possible nonconvergence, we propose a refined bidiagonalization Lanczos method and apply the implicitly restarting technique to it, and we then present an implicitly restarted bidiagonalization Lanczos algorithm(IRBL) and an implicitly restarted refined bidiagonalization Lanczos algorithm (IRRBL). A new implicitly restarting scheme and a reliable and efficient algorithm for computing refined shifts are developed for this special structure eigenproblem.Theoretical analysis and numerical experiments show that IRRBL performs much better than IRBL.