针对航空发动机ECT滑油监测数据在采集传输过程中易受噪声干扰而影响数据有效特征提取的问题,提出了一种双小波去噪算法。在2个小波域下对数据进行分解,通过阈值函数进行滤波,利用小波系数的分布差异,迫使2个小波域下的去噪信号相同,反...针对航空发动机ECT滑油监测数据在采集传输过程中易受噪声干扰而影响数据有效特征提取的问题,提出了一种双小波去噪算法。在2个小波域下对数据进行分解,通过阈值函数进行滤波,利用小波系数的分布差异,迫使2个小波域下的去噪信号相同,反正切函数作为罚函数,得到更加稀疏的系数表达。实验结果表明:与传统的小波去噪方法相比,连续信号和阶跃信号的平均信噪比提高了约2.3 d B和4.2 d B,去噪效果得到优化。展开更多
In mineral exploration, the apparent resistivity and apparent frequency (or apparent polarizability) parameters of induced polarization method are commonly utilized to describe the induced polarization anomaly. When...In mineral exploration, the apparent resistivity and apparent frequency (or apparent polarizability) parameters of induced polarization method are commonly utilized to describe the induced polarization anomaly. When the target geology structure is significantly complicated, these parameters would fail to reflect the nature of the anomaly source, and wrong conclusions may be obtained. A wavelet approach and a metal factor method were used to comprehensively interpret the induced polarization anomaly of complex geologic bodies in the Adi Bladia mine. Db5 wavelet basis was used to conduct two-scale decomposition and reconstruction, which effectively suppress the noise interference of greenschist facies regional metamorphism and magma intrusion, making energy concentrated and boundary problem unobservable. On the basis of that, the ore-induced anomaly was effectively extracted by the metal factor method.展开更多
Aim To fuse the fluorescence image and transmission image of a cell into a single image containing more information than any of the individual image. Methods Image fusion technology was applied to biological cell imag...Aim To fuse the fluorescence image and transmission image of a cell into a single image containing more information than any of the individual image. Methods Image fusion technology was applied to biological cell imaging processing. It could match the images and improve the confidence and spatial resolution of the images. Using two algorithms, double thresholds algorithm and denoising algorithm based on wavelet transform,the fluorescence image and transmission image of a Cell were merged into a composite image. Results and Conclusion The position of fluorescence and the structure of cell can be displyed in the composite image. The signal-to-noise ratio of the exultant image is improved to a large extent. The algorithms are not only useful to investigate the fluorescence and transmission images, but also suitable to observing two or more fluoascent label proes in a single cell.展开更多
Due to the disturbances arising from the coherence of reflected waves and from echo noise,problems such as limitations,instability and poor accuracy exist with the current quantitative analysis methods.According to th...Due to the disturbances arising from the coherence of reflected waves and from echo noise,problems such as limitations,instability and poor accuracy exist with the current quantitative analysis methods.According to the intrinsic features of GPR signals and wavelet time–frequency analysis,an optimal wavelet basis named GPR3.3 wavelet is constructed via an improved biorthogonal wavelet construction method to quantitatively analyse the GPR signal.A new quantitative analysis method based on the biorthogonal wavelet(the QAGBW method)is proposed and applied in the analysis of analogue and measured signals.The results show that compared with the Bayesian frequency-domain blind deconvolution and with existing wavelet bases,the QAGBW method based on optimal wavelet can limit the disturbance from factors such as the coherence of reflected waves and echo noise,improve the quantitative analytical precision of the GPR signal,and match the minimum thickness for quantitative analysis with the vertical resolution of GPR detection.展开更多
In the edge detection of Remote Sensing (RS) image, the useful detail losing and the spurious edge often appear. To solve the problem, the authors uses the dyadic wavelet to detect the edge of surface features by comb...In the edge detection of Remote Sensing (RS) image, the useful detail losing and the spurious edge often appear. To solve the problem, the authors uses the dyadic wavelet to detect the edge of surface features by combining the edge detecting with the multi-resolution analyzing of the wavelet transform. Via the dyadic wavelet decomposing, the RS image of a certain appropriate scale is obtained, and the edge data of the plane and the upright directions are respectively figured out, then the gradient vector module of the surface features is worked out. By tracing them, the authors get the edge data of the object, therefore build the RS image which obtains the checked edge. This method can depress the effect of noise and examine exactly the edge data of the object by rule and line. With an experiment of an RS image which obtains an airport, the authors certificate the feasibility of the application of dyadic wavelet in the object edge detection.展开更多
Structural health monitoring(SHM)in-service is very important for wind turbine system.Because the central wavelength of a fiber Bragg grating(FBG)sensor changes linearly with strain or temperature,FBG-based sensors ar...Structural health monitoring(SHM)in-service is very important for wind turbine system.Because the central wavelength of a fiber Bragg grating(FBG)sensor changes linearly with strain or temperature,FBG-based sensors are easily applied to structural tests.Therefore,the monitoring of wind turbine blades by FBG sensors is proposed.The method is experimentally proved to be feasible.Five FBG sensors were set along the blade length in order to measure distributed strain.However,environmental or measurement noise may cover the structural signals.Dual-tree complex wavelet transform(DT-CWT)is suggested to wipe off the noise.The experimental studies indicate that the tested strain fluctuate distinctly as one of the blades is broken.The rotation period is about 1 s at the given working condition.However,the period is about 0.3 s if all the wind blades are in good conditions.Therefore,strain monitoring by FBG sensors could predict damage of a wind turbine blade system.Moreover,the studies indicate that monitoring of one blade is adequate to diagnose the status of a wind generator.展开更多
A selective subband enhancement method based on biorthogonal wavelet base is proposed. This novel image enhancement method is just for those images in which the energy of target information area is relatively lower. I...A selective subband enhancement method based on biorthogonal wavelet base is proposed. This novel image enhancement method is just for those images in which the energy of target information area is relatively lower. It includes two parts: one is enhancing the low frequency subband by wavelet decomposition and the other is building a new criterion based on entropy window to image evaluation. Experimental results show that this new scheme may result in a perfect image processing.展开更多
Based on the approximate sparseness of speech in wavelet basis,a compressed sensing theory is applied to compress and reconstruct speech signals.Compared with one-dimensional orthogonal wavelet transform(OWT),two-dime...Based on the approximate sparseness of speech in wavelet basis,a compressed sensing theory is applied to compress and reconstruct speech signals.Compared with one-dimensional orthogonal wavelet transform(OWT),two-dimensional OWT combined with Dmeyer and biorthogonal wavelet is firstly proposed to raise running efficiency in speech frame processing,furthermore,the threshold is set to improve the sparseness.Then an adaptive subgradient projection method(ASPM)is adopted for speech reconstruction in compressed sensing.Meanwhile,mechanism which adaptively adjusts inflation parameter in different iterations has been designed for fast convergence.Theoretical analysis and simulation results conclude that this algorithm has fast convergence,and lower reconstruction error,and also exhibits higher robustness in different noise intensities.展开更多
Seismic wavelet estimation is an important part of seismic data processing and interpretation, whose preciseness is directly related to the results of deconvolution and inversion. Wavelet estimation based on higher-or...Seismic wavelet estimation is an important part of seismic data processing and interpretation, whose preciseness is directly related to the results of deconvolution and inversion. Wavelet estimation based on higher-order spectra is an important new method. However, the higher-order spectra often have phase wrapping problems, which lead to wavelet phase spectrum deviations and thereby affect mixed-phase wavelet estimation. To solve this problem, we propose a new phase spectral method based on conformal mapping in the bispectral domain. The method avoids the phase wrapping problems by narrowing the scope of the Fourier phase spectrum to eliminate the bispectral phase wrapping influence in the original phase spectral estimation. The method constitutes least-squares wavelet phase spectrum estimation based on conformal mapping which is applied to mixed-phase wavelet estimation with the least-squares wavelet amplitude spectrum estimation. Theoretical model and actual seismic data verify the validity of this method. We also extend the idea of conformal mapping in the bispectral wavelet phase spectrum estimation to trispectral wavelet phase spectrum estimation.展开更多
文摘针对航空发动机ECT滑油监测数据在采集传输过程中易受噪声干扰而影响数据有效特征提取的问题,提出了一种双小波去噪算法。在2个小波域下对数据进行分解,通过阈值函数进行滤波,利用小波系数的分布差异,迫使2个小波域下的去噪信号相同,反正切函数作为罚函数,得到更加稀疏的系数表达。实验结果表明:与传统的小波去噪方法相比,连续信号和阶跃信号的平均信噪比提高了约2.3 d B和4.2 d B,去噪效果得到优化。
基金Project(41174103)supported by the National Natural Science Foundation of ChinaProject(2010-211)supported by the Foreign Mineral Resources Venture Exploration Special Fund of China
文摘In mineral exploration, the apparent resistivity and apparent frequency (or apparent polarizability) parameters of induced polarization method are commonly utilized to describe the induced polarization anomaly. When the target geology structure is significantly complicated, these parameters would fail to reflect the nature of the anomaly source, and wrong conclusions may be obtained. A wavelet approach and a metal factor method were used to comprehensively interpret the induced polarization anomaly of complex geologic bodies in the Adi Bladia mine. Db5 wavelet basis was used to conduct two-scale decomposition and reconstruction, which effectively suppress the noise interference of greenschist facies regional metamorphism and magma intrusion, making energy concentrated and boundary problem unobservable. On the basis of that, the ore-induced anomaly was effectively extracted by the metal factor method.
文摘Aim To fuse the fluorescence image and transmission image of a cell into a single image containing more information than any of the individual image. Methods Image fusion technology was applied to biological cell imaging processing. It could match the images and improve the confidence and spatial resolution of the images. Using two algorithms, double thresholds algorithm and denoising algorithm based on wavelet transform,the fluorescence image and transmission image of a Cell were merged into a composite image. Results and Conclusion The position of fluorescence and the structure of cell can be displyed in the composite image. The signal-to-noise ratio of the exultant image is improved to a large extent. The algorithms are not only useful to investigate the fluorescence and transmission images, but also suitable to observing two or more fluoascent label proes in a single cell.
基金Projects(51678071,51278071)supported by the National Natural Science Foundation of ChinaProjects(14KC06,CX2015BS02)supported by Changsha University of Science&Technology,China
文摘Due to the disturbances arising from the coherence of reflected waves and from echo noise,problems such as limitations,instability and poor accuracy exist with the current quantitative analysis methods.According to the intrinsic features of GPR signals and wavelet time–frequency analysis,an optimal wavelet basis named GPR3.3 wavelet is constructed via an improved biorthogonal wavelet construction method to quantitatively analyse the GPR signal.A new quantitative analysis method based on the biorthogonal wavelet(the QAGBW method)is proposed and applied in the analysis of analogue and measured signals.The results show that compared with the Bayesian frequency-domain blind deconvolution and with existing wavelet bases,the QAGBW method based on optimal wavelet can limit the disturbance from factors such as the coherence of reflected waves and echo noise,improve the quantitative analytical precision of the GPR signal,and match the minimum thickness for quantitative analysis with the vertical resolution of GPR detection.
基金Supported by the National Natural Science Foundation of China (No.40071061).
文摘In the edge detection of Remote Sensing (RS) image, the useful detail losing and the spurious edge often appear. To solve the problem, the authors uses the dyadic wavelet to detect the edge of surface features by combining the edge detecting with the multi-resolution analyzing of the wavelet transform. Via the dyadic wavelet decomposing, the RS image of a certain appropriate scale is obtained, and the edge data of the plane and the upright directions are respectively figured out, then the gradient vector module of the surface features is worked out. By tracing them, the authors get the edge data of the object, therefore build the RS image which obtains the checked edge. This method can depress the effect of noise and examine exactly the edge data of the object by rule and line. With an experiment of an RS image which obtains an airport, the authors certificate the feasibility of the application of dyadic wavelet in the object edge detection.
基金supported by the National Natural Science Foundation of China(No.11402112)the National Key Technology Support Program (No.2012BAA01B02)。
文摘Structural health monitoring(SHM)in-service is very important for wind turbine system.Because the central wavelength of a fiber Bragg grating(FBG)sensor changes linearly with strain or temperature,FBG-based sensors are easily applied to structural tests.Therefore,the monitoring of wind turbine blades by FBG sensors is proposed.The method is experimentally proved to be feasible.Five FBG sensors were set along the blade length in order to measure distributed strain.However,environmental or measurement noise may cover the structural signals.Dual-tree complex wavelet transform(DT-CWT)is suggested to wipe off the noise.The experimental studies indicate that the tested strain fluctuate distinctly as one of the blades is broken.The rotation period is about 1 s at the given working condition.However,the period is about 0.3 s if all the wind blades are in good conditions.Therefore,strain monitoring by FBG sensors could predict damage of a wind turbine blade system.Moreover,the studies indicate that monitoring of one blade is adequate to diagnose the status of a wind generator.
基金Project (2003AA1Z2610) supported by National High Technology Research and Development Programof China
文摘A selective subband enhancement method based on biorthogonal wavelet base is proposed. This novel image enhancement method is just for those images in which the energy of target information area is relatively lower. It includes two parts: one is enhancing the low frequency subband by wavelet decomposition and the other is building a new criterion based on entropy window to image evaluation. Experimental results show that this new scheme may result in a perfect image processing.
基金Supported by the National Natural Science Foundation of China(No.60472058,60975017)the Fundamental Research Funds for the Central Universities(No.2009B32614,2009B32414)
文摘Based on the approximate sparseness of speech in wavelet basis,a compressed sensing theory is applied to compress and reconstruct speech signals.Compared with one-dimensional orthogonal wavelet transform(OWT),two-dimensional OWT combined with Dmeyer and biorthogonal wavelet is firstly proposed to raise running efficiency in speech frame processing,furthermore,the threshold is set to improve the sparseness.Then an adaptive subgradient projection method(ASPM)is adopted for speech reconstruction in compressed sensing.Meanwhile,mechanism which adaptively adjusts inflation parameter in different iterations has been designed for fast convergence.Theoretical analysis and simulation results conclude that this algorithm has fast convergence,and lower reconstruction error,and also exhibits higher robustness in different noise intensities.
基金supported by National 973 Program (No. 2007CB209600)
文摘Seismic wavelet estimation is an important part of seismic data processing and interpretation, whose preciseness is directly related to the results of deconvolution and inversion. Wavelet estimation based on higher-order spectra is an important new method. However, the higher-order spectra often have phase wrapping problems, which lead to wavelet phase spectrum deviations and thereby affect mixed-phase wavelet estimation. To solve this problem, we propose a new phase spectral method based on conformal mapping in the bispectral domain. The method avoids the phase wrapping problems by narrowing the scope of the Fourier phase spectrum to eliminate the bispectral phase wrapping influence in the original phase spectral estimation. The method constitutes least-squares wavelet phase spectrum estimation based on conformal mapping which is applied to mixed-phase wavelet estimation with the least-squares wavelet amplitude spectrum estimation. Theoretical model and actual seismic data verify the validity of this method. We also extend the idea of conformal mapping in the bispectral wavelet phase spectrum estimation to trispectral wavelet phase spectrum estimation.
基金National Natural Science Foundation of Chian(No.60272042)Natural Science Foundation of Henan Province(No.211050300)Natural Science Foundation of Henan University(No.XK01069)
文摘In this paper, we give a survey of matrix approach in wavelet theory , and describe some related results which were obtained by ourselves.