Field measurements on thermal comfort were carried out in a building with double-skin faade from January 14th to 16th,2009.Data are obtained by measurements of physical parameters and a questionnaire survey is conduct...Field measurements on thermal comfort were carried out in a building with double-skin faade from January 14th to 16th,2009.Data are obtained by measurements of physical parameters and a questionnaire survey is conducted at the same time in 27 offices of the building.The subjective survey involves questions on demographic information of the occupants,health status,environmental comfort conditions and acceptance.A total of 150 occupants are investigated and 131 questionnaires are completed.The statistical data presents the distributions of predicted mean vote,mean thermal sensation vote,mean thermal comfort vote,thermal acceptability,etc.The results show that low relative humidity is the main reason causing thermal discomfort.The greatest discomfort is dry mouth and eye dryness which are caused by low relative humidity.The females are verified to be more sensitive than the males.Meanwhile,a double-skin faade represents a good noise insulation effect while the glare problem is still unresolved.展开更多
An experimental study of the thermal characteristics of an existing office building with double skin facade DSF were conducted in hot summer daytime in Nanjing China. The temperature distributions of the DSF and indoo...An experimental study of the thermal characteristics of an existing office building with double skin facade DSF were conducted in hot summer daytime in Nanjing China. The temperature distributions of the DSF and indoor environment were measured at different control modes of DSF.The results show that the energy consumption of the air conditioning system in room B with opened exterior vents a closed interior facade and an air cavity with shading was 21.0% less than that in room A with closed exterior vents a closed interior facade and air cavity without shading in 9.5 h. The temperature distributions of the DSF and indoor environment in both horizontal and vertical directions were decisively influenced by shading conditions. The usage of shading devices strengthens the stack effect on the air cavity. Compared to room A the temperature distribution in room B is more uniform with smaller fluctuations.Meanwhile the problem of overheating in the air cavity of the DSF is still present in all tested conditions.展开更多
基金The National Key Technology R&D Program of Chinaduring the 11th Five-Year Plan Period(No.2008BAJ12B05)
文摘Field measurements on thermal comfort were carried out in a building with double-skin faade from January 14th to 16th,2009.Data are obtained by measurements of physical parameters and a questionnaire survey is conducted at the same time in 27 offices of the building.The subjective survey involves questions on demographic information of the occupants,health status,environmental comfort conditions and acceptance.A total of 150 occupants are investigated and 131 questionnaires are completed.The statistical data presents the distributions of predicted mean vote,mean thermal sensation vote,mean thermal comfort vote,thermal acceptability,etc.The results show that low relative humidity is the main reason causing thermal discomfort.The greatest discomfort is dry mouth and eye dryness which are caused by low relative humidity.The females are verified to be more sensitive than the males.Meanwhile,a double-skin faade represents a good noise insulation effect while the glare problem is still unresolved.
基金The National Natural Science Foundation of China(No.51308295,51206080)China Postdoctoral Science Foundation(No.2013M531368)
文摘An experimental study of the thermal characteristics of an existing office building with double skin facade DSF were conducted in hot summer daytime in Nanjing China. The temperature distributions of the DSF and indoor environment were measured at different control modes of DSF.The results show that the energy consumption of the air conditioning system in room B with opened exterior vents a closed interior facade and an air cavity with shading was 21.0% less than that in room A with closed exterior vents a closed interior facade and air cavity without shading in 9.5 h. The temperature distributions of the DSF and indoor environment in both horizontal and vertical directions were decisively influenced by shading conditions. The usage of shading devices strengthens the stack effect on the air cavity. Compared to room A the temperature distribution in room B is more uniform with smaller fluctuations.Meanwhile the problem of overheating in the air cavity of the DSF is still present in all tested conditions.