The method of numerical solving of nonlinear model problems of theory of a complex quasi-potential in doubly-connected nonlinear-layered curvilinear domains considering inverse influence function of flow on a conducti...The method of numerical solving of nonlinear model problems of theory of a complex quasi-potential in doubly-connected nonlinear-layered curvilinear domains considering inverse influence function of flow on a conductivity coefficient of medium was developed on the basis of synthesis of numerical methods of the quasi-conformal mappings and summary representations in conjunction with domain decomposition by method Schwartz. The proposed algorithm allows finding the potential of the quasiideals field, construction a motion grid (fluid-flow grid) simultaneously defining the flow lines that separate of sub-domains constancy of coefficient conductivity and identification the piecewise-constant values of coefficient conductivity, the local flows for the known measurements on boundary of domain.展开更多
In this paper,we construct the addition formulae for several integrable hierarchies,including the discrete KP,the q-deformed KP,the two-component BKP and the D type Drinfeld–Sokolov hierarchies.With the help of the H...In this paper,we construct the addition formulae for several integrable hierarchies,including the discrete KP,the q-deformed KP,the two-component BKP and the D type Drinfeld–Sokolov hierarchies.With the help of the Hirota bilinear equations and τ functions of different kinds of KP hierarchies,we prove that these addition formulae are equivalent to these hierarchies.These studies show that the addition formula in the research of the integrable systems has good universality.展开更多
文摘The method of numerical solving of nonlinear model problems of theory of a complex quasi-potential in doubly-connected nonlinear-layered curvilinear domains considering inverse influence function of flow on a conductivity coefficient of medium was developed on the basis of synthesis of numerical methods of the quasi-conformal mappings and summary representations in conjunction with domain decomposition by method Schwartz. The proposed algorithm allows finding the potential of the quasiideals field, construction a motion grid (fluid-flow grid) simultaneously defining the flow lines that separate of sub-domains constancy of coefficient conductivity and identification the piecewise-constant values of coefficient conductivity, the local flows for the known measurements on boundary of domain.
基金Supported by the Zhejiang Provincial Natural Science Foundation under Grant No.LY15A010004the National Natural Science Foundation of China under Grant Nos.11201251,11571192+2 种基金the Natural Science Foundation of Ningbo under Grant No.2015A610157supported by the National Natural Science Foundation of China under Grant No.11271210K.C.Wong Magna Fund in Ningbo University
文摘In this paper,we construct the addition formulae for several integrable hierarchies,including the discrete KP,the q-deformed KP,the two-component BKP and the D type Drinfeld–Sokolov hierarchies.With the help of the Hirota bilinear equations and τ functions of different kinds of KP hierarchies,we prove that these addition formulae are equivalent to these hierarchies.These studies show that the addition formula in the research of the integrable systems has good universality.