A new simple loop algebra GM is constructed, which is devoted to establishing an isospectral problem.By making use of generalized Tu scheme, the multi-component SC hierarchy is obtained. Furthermore, an expanding loop...A new simple loop algebra GM is constructed, which is devoted to establishing an isospectral problem.By making use of generalized Tu scheme, the multi-component SC hierarchy is obtained. Furthermore, an expanding loop algebra FM of the loop algebra GM is presented. Based on FM, the multi-component integrable coupling system of the multi-component SC hierarchy of soliton equations is worked out. How to design isospectral problem of mulitcomponent hierarchy of soliton equations is a technique and interesting topic. The method can be applied to other nonlinear evolution equations hierarchy.展开更多
The authors give the solution to the problem of one-dimensional conso l idation of double-layered ground with the use of the differential quadrature me t hod. Case studies showed that the computational results for por...The authors give the solution to the problem of one-dimensional conso l idation of double-layered ground with the use of the differential quadrature me t hod. Case studies showed that the computational results for pore-water pressure in soil layer agreed with those of analytical solution; and that in the computat ional results for the interface of soil layer also agreed with those of the anal ytical solution except for the small discrepancies during shortly after the star t of computation. The advantages of the solution presented in this paper are tha t compared with the analytical solution, it avoids the cumbersome work in solvin g the transcendental equation for eigenvalues, and in the case of the Laplace transform s olution, it can resolve the precision problem in the numerical solution of long time inverse Laplace transform. Because of the matrix form of the solution in th is paper, it is convenient for formulating computational program for engineering practice. The formulas for calculating double-layered ground consolidation may be easily extended to the case of multi-layered soils.展开更多
文摘A new simple loop algebra GM is constructed, which is devoted to establishing an isospectral problem.By making use of generalized Tu scheme, the multi-component SC hierarchy is obtained. Furthermore, an expanding loop algebra FM of the loop algebra GM is presented. Based on FM, the multi-component integrable coupling system of the multi-component SC hierarchy of soliton equations is worked out. How to design isospectral problem of mulitcomponent hierarchy of soliton equations is a technique and interesting topic. The method can be applied to other nonlinear evolution equations hierarchy.
文摘The authors give the solution to the problem of one-dimensional conso l idation of double-layered ground with the use of the differential quadrature me t hod. Case studies showed that the computational results for pore-water pressure in soil layer agreed with those of analytical solution; and that in the computat ional results for the interface of soil layer also agreed with those of the anal ytical solution except for the small discrepancies during shortly after the star t of computation. The advantages of the solution presented in this paper are tha t compared with the analytical solution, it avoids the cumbersome work in solvin g the transcendental equation for eigenvalues, and in the case of the Laplace transform s olution, it can resolve the precision problem in the numerical solution of long time inverse Laplace transform. Because of the matrix form of the solution in th is paper, it is convenient for formulating computational program for engineering practice. The formulas for calculating double-layered ground consolidation may be easily extended to the case of multi-layered soils.