An optimization model and its solution algorithm for alternate traffic restriction(ATR) schemes were introduced in terms of both the restriction districts and the proportion of restricted automobiles. A bi-level progr...An optimization model and its solution algorithm for alternate traffic restriction(ATR) schemes were introduced in terms of both the restriction districts and the proportion of restricted automobiles. A bi-level programming model was proposed to model the ATR scheme optimization problem by aiming at consumer surplus maximization and overload flow minimization at the upper-level model. At the lower-level model, elastic demand, mode choice and multi-class user equilibrium assignment were synthetically optimized. A genetic algorithm involving prolonging codes was constructed, demonstrating high computing efficiency in that it dynamically includes newly-appearing overload links in the codes so as to reduce the subsequent searching range. Moreover,practical processing approaches were suggested, which may improve the operability of the model-based solutions.展开更多
In this paper,computational models of environmental pollution and energy consumption of urban multimodal traffic network are proposed according to pertinent research and a multi-objective programming model is then dev...In this paper,computational models of environmental pollution and energy consumption of urban multimodal traffic network are proposed according to pertinent research and a multi-objective programming model is then developed to formulate optimization problem for such a system.Simultaneously,the main factors,such as travel time,pricing and convenience which influence travelers' choice behaviors are all considered and a combined assignment model is proposed to simulate travelers' mode and route choices.A bi-level programming model,in which the multi-objective optimization model is treated as the upper-level problem and the combined assignment model is processed as the lower-level problem,is then presented to solve multi-criterion system optimization problem for urban multimodal traffic network.The solution algorithms of the proposed models are also presented.Finally,the model and its algorithms are illustrated through a simple numerical example.展开更多
By handling the travel cost function artfully, the authors formulate the transportation mixed network design problem (MNDP) as a mixed-integer, nonlinear bilevel programming problem, in which the lower-level problem...By handling the travel cost function artfully, the authors formulate the transportation mixed network design problem (MNDP) as a mixed-integer, nonlinear bilevel programming problem, in which the lower-level problem, comparing with that of conventional bilevel DNDP models, is not a side constrained user equilibrium assignment problem, but a standard user equilibrium assignment problem. Then, the bilevel programming model for MNDP is reformulated as a continuous version of bilevel programming problem by the continuation method. By virtue of the optimal-value function, the lower-level assignment problem can be expressed as a nonlinear equality constraint. Therefore, the bilevel programming model for MNDP can be transformed into an equivalent single-level optimization problem. By exploring the inherent nature of the MNDP, the optimal-value function for the lower- level equilibrium assignment problem is proved to be continuously differentiable and its functional value and gradient can be obtained efficiently. Thus, a continuously differentiable but still nonconvex optimization formulation of the MNDP is created, and then a locally convergent algorithm is proposed by applying penalty function method. The inner loop of solving the subproblem is mainly to implement an Ml-or-nothing assignment. Finally, a small-scale transportation network and a large-scale network are presented to verify the proposed model and algorithm.展开更多
The bilevel programming is applied to solve hierarchical intelligence control problems in such fields as industry, agriculture, transportation, military, and so on. This paper presents a quadratic objective penalty fu...The bilevel programming is applied to solve hierarchical intelligence control problems in such fields as industry, agriculture, transportation, military, and so on. This paper presents a quadratic objective penalty function with two penalty parameters for inequality constrained bilevel programming. Under some conditions, the optimal solution to the bilevel programming defined by the quadratic objective penalty function is proved to be an optimal solution to the original bilevel programming. Moreover, based on the quadratic objective penalty function, an algorithm is developed to l^nd an optimal solution to the original bilevel programming, and its convergence proved under some conditions. Furthermore, under the assumption of convexity at function without lower level problems is defined and lower level problems, a quadratic objective penalty is proved equal to the original bilevel programming.展开更多
基金Supported by the National Natural Science Foundation of China(61702012)the Scientific Research Foundation of the Higher Education Institutions of Anhui Province of China(KJ2017A361)the University Outstanding Young Talent Support Project of Anhui Province of China(gxyq2017026)
基金Projects(71171200,51108465,71101155)supported by the National Natural Science Foundation of China
文摘An optimization model and its solution algorithm for alternate traffic restriction(ATR) schemes were introduced in terms of both the restriction districts and the proportion of restricted automobiles. A bi-level programming model was proposed to model the ATR scheme optimization problem by aiming at consumer surplus maximization and overload flow minimization at the upper-level model. At the lower-level model, elastic demand, mode choice and multi-class user equilibrium assignment were synthetically optimized. A genetic algorithm involving prolonging codes was constructed, demonstrating high computing efficiency in that it dynamically includes newly-appearing overload links in the codes so as to reduce the subsequent searching range. Moreover,practical processing approaches were suggested, which may improve the operability of the model-based solutions.
基金supported by the National Natural Science Foundation of China (Grant Nos. 71071016, 70901005)the Fundamental Research Funds for the Central Universities (Grant Nos. 2009JBM040 and 2009JBZ012)funded by a Discovery Grant (Application No. 342485-07) from the Natural Science and Engineering Research Council (NSERC), Canada
文摘In this paper,computational models of environmental pollution and energy consumption of urban multimodal traffic network are proposed according to pertinent research and a multi-objective programming model is then developed to formulate optimization problem for such a system.Simultaneously,the main factors,such as travel time,pricing and convenience which influence travelers' choice behaviors are all considered and a combined assignment model is proposed to simulate travelers' mode and route choices.A bi-level programming model,in which the multi-objective optimization model is treated as the upper-level problem and the combined assignment model is processed as the lower-level problem,is then presented to solve multi-criterion system optimization problem for urban multimodal traffic network.The solution algorithms of the proposed models are also presented.Finally,the model and its algorithms are illustrated through a simple numerical example.
基金supported by the National Basic Research Program of China under Grant No. 2006CB705500the National Natural Science Foundation of China under Grant No. 0631001+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University Volvo Research and Educational Foundations
文摘By handling the travel cost function artfully, the authors formulate the transportation mixed network design problem (MNDP) as a mixed-integer, nonlinear bilevel programming problem, in which the lower-level problem, comparing with that of conventional bilevel DNDP models, is not a side constrained user equilibrium assignment problem, but a standard user equilibrium assignment problem. Then, the bilevel programming model for MNDP is reformulated as a continuous version of bilevel programming problem by the continuation method. By virtue of the optimal-value function, the lower-level assignment problem can be expressed as a nonlinear equality constraint. Therefore, the bilevel programming model for MNDP can be transformed into an equivalent single-level optimization problem. By exploring the inherent nature of the MNDP, the optimal-value function for the lower- level equilibrium assignment problem is proved to be continuously differentiable and its functional value and gradient can be obtained efficiently. Thus, a continuously differentiable but still nonconvex optimization formulation of the MNDP is created, and then a locally convergent algorithm is proposed by applying penalty function method. The inner loop of solving the subproblem is mainly to implement an Ml-or-nothing assignment. Finally, a small-scale transportation network and a large-scale network are presented to verify the proposed model and algorithm.
基金supported by the National Natural Science Foundation of China under Grant Nos.11271329 and 10971193
文摘The bilevel programming is applied to solve hierarchical intelligence control problems in such fields as industry, agriculture, transportation, military, and so on. This paper presents a quadratic objective penalty function with two penalty parameters for inequality constrained bilevel programming. Under some conditions, the optimal solution to the bilevel programming defined by the quadratic objective penalty function is proved to be an optimal solution to the original bilevel programming. Moreover, based on the quadratic objective penalty function, an algorithm is developed to l^nd an optimal solution to the original bilevel programming, and its convergence proved under some conditions. Furthermore, under the assumption of convexity at function without lower level problems is defined and lower level problems, a quadratic objective penalty is proved equal to the original bilevel programming.