期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Swin Transformer和双层路由注意力的多标签图像分类算法
1
作者
张震
王贺
宋宏旭
《测试技术学报》
2024年第4期413-419,共7页
图像分类是图像处理中一项基础而又重要的工作。单一标签的图像分类已经无法满足人们的需求,研究者们开始关注于多标签图像分类。本文提出了一种Swin Transformer进行特征提取,由双层路由注意力模块进行特征处理的多标签图像分类框架。S...
图像分类是图像处理中一项基础而又重要的工作。单一标签的图像分类已经无法满足人们的需求,研究者们开始关注于多标签图像分类。本文提出了一种Swin Transformer进行特征提取,由双层路由注意力模块进行特征处理的多标签图像分类框架。Swin Transformer通过分层结构提取多尺度信息,在多目标和更细粒度的图像识别方面优于Vision Transformer;双层路由注意力模块能够实现更灵活的计算分配和内容感知,可根据输入图像的特征自适应地调整注意力权重,灵活地控制注意力的强度和范围。模型在COCO数据集上平均精度均值为87.3,在VOC2007数据集上平均精度均值为96.7,一定程度上提高了多标签图像分类的精度。
展开更多
关键词
深度学习
多标签分类
Swin
Transformer
双层路由注意力模块
下载PDF
职称材料
题名
基于Swin Transformer和双层路由注意力的多标签图像分类算法
1
作者
张震
王贺
宋宏旭
机构
山西大学物理电子工程学院
出处
《测试技术学报》
2024年第4期413-419,共7页
文摘
图像分类是图像处理中一项基础而又重要的工作。单一标签的图像分类已经无法满足人们的需求,研究者们开始关注于多标签图像分类。本文提出了一种Swin Transformer进行特征提取,由双层路由注意力模块进行特征处理的多标签图像分类框架。Swin Transformer通过分层结构提取多尺度信息,在多目标和更细粒度的图像识别方面优于Vision Transformer;双层路由注意力模块能够实现更灵活的计算分配和内容感知,可根据输入图像的特征自适应地调整注意力权重,灵活地控制注意力的强度和范围。模型在COCO数据集上平均精度均值为87.3,在VOC2007数据集上平均精度均值为96.7,一定程度上提高了多标签图像分类的精度。
关键词
深度学习
多标签分类
Swin
Transformer
双层路由注意力模块
Keywords
deep learning
multi-label image classification
swin transformer
bi-level routing attention
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Swin Transformer和双层路由注意力的多标签图像分类算法
张震
王贺
宋宏旭
《测试技术学报》
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部