期刊文献+
共找到127篇文章
< 1 2 7 >
每页显示 20 50 100
基于双延迟深度确定性策略梯度的受电弓主动控制
1
作者 吴延波 韩志伟 +2 位作者 王惠 刘志刚 张雨婧 《电工技术学报》 EI CSCD 北大核心 2024年第14期4547-4556,共10页
弓网系统耦合性能对于高速列车受流质量起着至关重要的作用,提高弓网耦合性能,一种有效的方法是针对受电弓进行主动控制调节,特别是在低速线路提速及列车多线路混跑时,主动控制可通过提高弓网自适应适配性,有效降低线路改造成本并提升... 弓网系统耦合性能对于高速列车受流质量起着至关重要的作用,提高弓网耦合性能,一种有效的方法是针对受电弓进行主动控制调节,特别是在低速线路提速及列车多线路混跑时,主动控制可通过提高弓网自适应适配性,有效降低线路改造成本并提升受流质量。针对受电弓主动控制问题,该文提出一种基于双延迟深度确定性策略梯度(TD3)的深度强化学习受电弓主动控制算法。通过建立弓网耦合模型实现深度强化学习系统环境模块,利用TD3作为受电弓行为控制策略,最终通过对控制器模型训练实现有效的受电弓控制策略。实验结果表明,运用该文方法可有效提升低速线路列车高速运行时弓网耦合性能及受电弓在多线路运行时的适应性,为铁路线路提速及列车跨线路运行提供新的思路。 展开更多
关键词 低速线路 混跑 延迟深度确定性策略梯度(TD3) 受电弓主动控制
下载PDF
基于乐观探索的双延迟深度确定性策略梯度
2
作者 王浩宇 张衡波 +1 位作者 程玉虎 王雪松 《南京理工大学学报》 CAS CSCD 北大核心 2024年第3期300-309,共10页
双延迟深度确定性策略梯度是深度强化学习的一个主流算法,是一种无模型强化学习,已成功应用于具有挑战性的连续控制任务中。然而,当环境中奖励稀疏或者状态空间较大时,双延迟深度确定性策略梯度的样本效率较差,环境探索能力较弱。针对... 双延迟深度确定性策略梯度是深度强化学习的一个主流算法,是一种无模型强化学习,已成功应用于具有挑战性的连续控制任务中。然而,当环境中奖励稀疏或者状态空间较大时,双延迟深度确定性策略梯度的样本效率较差,环境探索能力较弱。针对通过双Q值函数的下界确定目标函数带来的低效探索问题,提出一种基于乐观探索的双延迟深度确定性策略梯度(TD3-OE)。首先,从双Q值函数出发,分析取下界会使得探索具有一定的悲观性;然后,利用高斯函数和分段函数分别对双Q值函数进行拟合;最后,利用拟合Q值函数和目标策略构造出探索策略,指导智能体在环境中进行探索。探索策略能够避免智能体学习到次优策略,从而有效解决低效探索的问题。该文在基于MuJoCo物理引擎的控制平台上将所提算法与基准算法进行试验对比,验证了所提算法的有效性。试验结果表明:所提算法在奖励、稳定性和学习速度等指标上均达到或超过其他基础强化学习算法。 展开更多
关键词 深度强化学习 延迟深度确定性策略梯度 探索策略 乐观探索
下载PDF
基于改进双延迟深度确定性策略梯度算法的电网有功安全校正控制 被引量:7
3
作者 顾雪平 刘彤 +2 位作者 李少岩 王铁强 杨晓东 《电工技术学报》 EI CSCD 北大核心 2023年第8期2162-2177,共16页
新型电力系统中,由于源荷不确定性的影响,发生线路过载事故的风险增大,传统的有功安全校正方法无法有效兼顾计算速度及效果等。基于此,该文提出一种基于改进双延迟深度确定性策略梯度算法的电网有功安全校正控制方法。首先,在满足系统... 新型电力系统中,由于源荷不确定性的影响,发生线路过载事故的风险增大,传统的有功安全校正方法无法有效兼顾计算速度及效果等。基于此,该文提出一种基于改进双延迟深度确定性策略梯度算法的电网有功安全校正控制方法。首先,在满足系统静态安全约束条件下,以可调元件出力调整量最小且保证系统整体运行安全性最高为目标,建立有功安全校正控制模型。其次,构建有功安全校正的深度强化学习框架,定义计及目标与约束的奖励函数、反映电力系统运行的观测状态、可改变系统状态的调节动作以及基于改进双延迟深度确定性策略梯度算法的智能体。最后,构造考虑源荷不确定性的历史系统过载场景,借助深度强化学习模型对智能体进行持续交互训练以获得良好的决策效果;并且进行在线应用,计及源荷未来可能的取值,快速得到最优的元件调整方案,消除过载线路。IEEE 39节点系统和IEEE 118节点系统算例结果表明,所提方法能够有效消除电力系统中的线路过载且避免短时间内再次越限,在计算速度、校正效果等方面,与传统方法相比具有明显的优势。 展开更多
关键词 新型电力系统 有功安全校正 深度强化学习 改进延迟深度确定性策略 最优调整方案
下载PDF
基于多维度优先级经验回放机制的深度确定性策略梯度算法
4
作者 荣垂霆 李海军 +2 位作者 朱恒伟 刘延旭 于士军 《德州学院学报》 2024年第4期21-27,32,共8页
为进一步提高深度确定性策略梯度算法在处理强化学习连续动作任务中的收敛速度,提出了一种基于多维度优先级经验回放机制的深度确定性策略梯度算法。首先,针对经验回放机制中样本数据利用率低的问题,利用时间差分误差指标对样本进行分类... 为进一步提高深度确定性策略梯度算法在处理强化学习连续动作任务中的收敛速度,提出了一种基于多维度优先级经验回放机制的深度确定性策略梯度算法。首先,针对经验回放机制中样本数据利用率低的问题,利用时间差分误差指标对样本进行分类;其次,利用稀缺性和新奇性两个指标对样本进行评分,并将稀缺性和新奇性的评分进行加权组合,得到最终的优先级评分;最后,将设计的多维度优先级经验回放机制方法应用在深度确定性策略梯度算法中,在强化学习连续控制任务中对改进算法进行测试,实验结果表明,改进算法的收敛速度有所提升。 展开更多
关键词 深度确定性策略梯度算法 强化学习 经验回放机制 多维度优先级
下载PDF
改进双延迟深度确定性策略梯度的多船协调避碰决策
5
作者 黄仁贤 罗亮 +1 位作者 杨萌 刘维勤 《计算机科学》 CSCD 北大核心 2023年第11期269-281,共13页
目前,多数海上避碰模型都是将船舶作为单智能体进行避碰决策,未考虑船舶间的协调避让,在多船会遇场景下仅靠单船进行避碰操作会导致避让效果不佳。为此,提出了一种改进双延迟深度确定性策略梯度算法(TD3)的Softmax深层双确定性策略梯度(... 目前,多数海上避碰模型都是将船舶作为单智能体进行避碰决策,未考虑船舶间的协调避让,在多船会遇场景下仅靠单船进行避碰操作会导致避让效果不佳。为此,提出了一种改进双延迟深度确定性策略梯度算法(TD3)的Softmax深层双确定性策略梯度(SD3)多船协调避碰模型。从考虑船舶航行安全的时空因素出发构建时间碰撞模型、空间碰撞模型,对船舶碰撞风险进行定量分析,在此基础上采用根据会遇态势和船速矢量动态变化的船域模型对船舶碰撞风险进行定性分析。综合船舶目标导向、航向角改变、航向保持、碰撞风险和《国际海上避碰规则》(COLREGS)的约束设计奖励函数,结合COLREGS中的典型相遇情况构造对遇、追越和交叉相遇多局面共存的会遇场景进行避碰模拟仿真。消融实验显示softmax运算符提升了SD3算法的性能,使其在船舶协调避碰中拥有更好的决策效果,并与其他强化学习算法进行学习效率和学习效果的比较。实验结果表明,SD3算法在多局面共存的复杂场景下能高效做出准确的避碰决策,并且性能优于其他强化学习算法。 展开更多
关键词 多船会遇 协调避碰 智能决策 延迟深度确定性策略梯度(TD3) Softmax深层确定性策略梯度(SD3) 强化学习
下载PDF
基于双评论家的多智能体深度确定性策略梯度方法 被引量:3
6
作者 丁世飞 杜威 +2 位作者 郭丽丽 张健 徐晓 《计算机研究与发展》 EI CSCD 北大核心 2023年第10期2394-2404,共11页
在现实世界的复杂多智能体环境中,任务的完成通常需要多个智能体之间的相互协作,这促使各种多智能体强化学习方法不断涌现.动作价值函数估计偏差是单智能体强化学习领域中备受关注的一个重要问题,而在多智能体环境中却鲜有研究.针对这... 在现实世界的复杂多智能体环境中,任务的完成通常需要多个智能体之间的相互协作,这促使各种多智能体强化学习方法不断涌现.动作价值函数估计偏差是单智能体强化学习领域中备受关注的一个重要问题,而在多智能体环境中却鲜有研究.针对这一问题,分别从理论和实验上证明了多智能体深度确定性策略梯度方法存在价值函数被高估.提出基于双评论家的多智能体深度确定性策略梯度(multiagent deep deterministic policy gradient method based on double critics,MADDPG-DC)方法,通过在双评论家网络上的最小值操作来避免价值被高估,进一步促进智能体学得最优的策略.此外,延迟行动者网络更新,保证行动者网络策略更新的效率和稳定性,提高策略学习和更新的质量.在多智能体粒子环境和交通信号控制环境上的实验结果证明了所提方法的可行性和优越性. 展开更多
关键词 强化学习 价值估计 评论家 交通信号控制 多智能体深度确定性策略梯度
下载PDF
基于深度确定性策略梯度算法的风光储系统联合调度策略 被引量:7
7
作者 张淑兴 马驰 +3 位作者 杨志学 王尧 吴昊 任洲洋 《中国电力》 CSCD 北大核心 2023年第2期68-76,共9页
针对风光储联合系统的调度问题,提出了一种基于深度强化学习的风光储系统联合调度模型。首先,以计划跟踪、弃风弃光以及储能运行成本最小为目标,建立了充分考虑风光储各个场站约束下的联合调度模型。然后,定义该调度模型在强化学习框架... 针对风光储联合系统的调度问题,提出了一种基于深度强化学习的风光储系统联合调度模型。首先,以计划跟踪、弃风弃光以及储能运行成本最小为目标,建立了充分考虑风光储各个场站约束下的联合调度模型。然后,定义该调度模型在强化学习框架下的系统状态变量、动作变量以及奖励函数等,引入了深度确定性策略梯度算法,利用其环境交互、策略探索的机制,学习风光储系统的联合调度策略,以实现对联合系统功率跟踪,减少弃风弃光以及储能充放电。最后,借用西北某地区风电、光伏、跟踪计划的历史数据对模型进行了训练和算例分析,结果表明所提方法可以较好地适应不同时期的风光变化,得到在给定风光下联合系统的调度策略。 展开更多
关键词 风光储联合系统 联合调度策略 确定性 深度强化学习 深度确定性策略梯度算法
下载PDF
基于改进深度确定性策略梯度算法的微电网能量优化调度 被引量:3
8
作者 李瑜 张占强 +1 位作者 孟克其劳 魏皓天 《电子测量技术》 北大核心 2023年第2期73-80,共8页
针对微电网中分布式发电设备存在输出不确定性和间歇性问题,以及传统的深度确定性策略梯度算法存在收敛速度慢、鲁棒性差、容易陷入局部最优的缺点。本文提出了一种基于优先经验回放的深度确定性策略梯度算法,以微电网系统运行成本最低... 针对微电网中分布式发电设备存在输出不确定性和间歇性问题,以及传统的深度确定性策略梯度算法存在收敛速度慢、鲁棒性差、容易陷入局部最优的缺点。本文提出了一种基于优先经验回放的深度确定性策略梯度算法,以微电网系统运行成本最低为目标,实现微电网的能量优化调度。首先,采用马尔可夫决策过程对微电网优化问题进行建模;其次,采用Sumtree结构的优先经验回放池提升样本利用效率,并且应用重要性采样来改善状态分布对收敛结果的影响。最后,本文利用真实的电力数据进行仿真验证,结果表明,提出的优化调度算法可以有效地学习到使微电网系统经济成本最低的运行策略,所提出的算法总运行时间比传统算法缩短了7.25%,运行成本降低了31.5%。 展开更多
关键词 优先经验回放 微电网能量优化调度 深度确定性策略梯度算法
下载PDF
基于双延迟深度确定性策略梯度的船舶自主避碰方法 被引量:4
9
作者 刘钊 周壮壮 +1 位作者 张明阳 刘敬贤 《交通信息与安全》 CSCD 北大核心 2022年第3期60-74,共15页
为满足智能船舶自主航行的发展需求,解决基于强化学习的船舶避碰决策方法存在的学习效率低、泛化能力弱以及复杂会遇场景下鲁棒性差等问题,针对船舶避碰决策信息的高维性和动作的连续性等特点,考虑决策的合理性和实时性,研究了基于双延... 为满足智能船舶自主航行的发展需求,解决基于强化学习的船舶避碰决策方法存在的学习效率低、泛化能力弱以及复杂会遇场景下鲁棒性差等问题,针对船舶避碰决策信息的高维性和动作的连续性等特点,考虑决策的合理性和实时性,研究了基于双延迟深度确定性策略梯度(TD3)的船舶自主避碰方法。根据船舶间相对运动信息与碰撞危险信息,从全局角度构建具有连续多时刻目标船信息的状态空间;依据船舶操纵性设计连续决策动作空间;综合考虑目标导向、航向保持、碰撞危险、《1972年国际海上避碰规则》(COLREGs)和良好船艺等因素,设计船舶运动的奖励函数;基于TD3算法,根据状态空间结构,结合长短期记忆(LSTM)网络和一维卷积网络,利用Actor-Critic结构设计船舶自主避碰网络模型,利用双价值网络学习、目标策略平滑以及策略网络延迟更新等方式稳定网络训练,利用跳帧以及批量大小和迭代更新次数动态增大等方式加速网络训练;为解决模型泛化能力弱的问题,提出基于TD3的船舶随机会遇场景训练流程,实现自主避碰模型应用的多场景迁移。运用训练得到的船舶自主避碰模型进行仿真验证,并与改进人工势场(APF)算法进行比较,结果表明:所提方法学习效率高,收敛快速平稳;训练得到的自主避碰模型在2船和多船会遇场景下均能使船舶在安全距离上驶过,并且在复杂会遇场景中比改进APF算法避碰成功率高,避让2~4艘目标船时成功率高达99.233%,5~7艘目标船时成功率97.600%,8~10艘目标船时成功率94.166%;所提方法能有效应对来船的不协调行动,避碰实时性高,决策安全合理,航向变化快速平稳、震荡少、避碰路径光滑,比改进APF方法性能更强。 展开更多
关键词 交通信息工程 船舶避碰 智能决策 深度强化学习 延迟深度确定性策略梯度
下载PDF
采用双经验回放池的噪声流双延迟深度确定性策略梯度算法
10
作者 王垚儒 李俊 《武汉科技大学学报》 CAS 北大核心 2020年第2期147-154,共8页
为了进一步提高双延迟深度确定性策略梯度算法(TD3)的网络探索性能和收敛速度,提出一种采用基于多步优先和重抽样优选机制的双经验回放池的噪声流TD3算法。该算法在策略网络中的每一层添加噪声流以增加参数的随机性,并引入多步优先经验... 为了进一步提高双延迟深度确定性策略梯度算法(TD3)的网络探索性能和收敛速度,提出一种采用基于多步优先和重抽样优选机制的双经验回放池的噪声流TD3算法。该算法在策略网络中的每一层添加噪声流以增加参数的随机性,并引入多步优先经验回放池,将多个连续样本组成一个基础单元进行存储,训练时通过多步截断双Q处理实现对值函数的有效逼近,同时增加一个经验回放池采用重抽样优选机制来存储学习价值更大的样本,双经验回放池的设置可弥补样本多样性不足的问题。在OpenAI Gym平台的Walker2d-v2场景中进行仿真实验,结果表明,与对比算法相比,本文算法获得的回报值有明显改善,网络收敛速度也大大加快。 展开更多
关键词 深度确定性策略梯度 TD3算法 深度强化学习 噪声流 多步截断Q学习 经验回放池
下载PDF
基于深度确定性策略梯度算法的智能水下机器人局部路径规划
11
作者 吕茜 党康宁 《科学技术创新》 2023年第20期224-228,共5页
路径规划是智能水下机器人技术研究的核心内容之一,是实现其自主航行和作业的关键环节。基于水下机器人的运动学模型,将深度确定性策略梯度(DDPG)算法应用于水下机器人的局部路径规划中,通过构造适当的奖励信号和设置合理的训练评估条件... 路径规划是智能水下机器人技术研究的核心内容之一,是实现其自主航行和作业的关键环节。基于水下机器人的运动学模型,将深度确定性策略梯度(DDPG)算法应用于水下机器人的局部路径规划中,通过构造适当的奖励信号和设置合理的训练评估条件,使算法适用于水下机器人的运动学模型。仿真试验验证了采用DDPG算法训练的水下机器人能够在航道水域环境中安全快速地规划和避开障碍物,实现自主安全航行。 展开更多
关键词 智能水下机器人 局部路径规划 深度确定性策略梯度(DDPG)算法 自主安全航行
下载PDF
基于改进双延迟深度确定性策略梯度法的无人机反追击机动决策 被引量:7
12
作者 郭万春 解武杰 +1 位作者 尹晖 董文瀚 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2021年第4期15-21,共7页
针对近距空战下的自主机动反追击问题,建立了无人机反追击马尔科夫(Markov)决策过程模型;在此基础上,提出了一种采用深度强化学习的无人机反追击自主机动决策方法。新方法基于经验回放区重构,改进了双延迟深度确定性策略梯度(TD3)算法,... 针对近距空战下的自主机动反追击问题,建立了无人机反追击马尔科夫(Markov)决策过程模型;在此基础上,提出了一种采用深度强化学习的无人机反追击自主机动决策方法。新方法基于经验回放区重构,改进了双延迟深度确定性策略梯度(TD3)算法,通过拟合策略函数与状态动作值函数,生成最优策略网络。仿真实验表明,在随机初始位置/姿态条件下,与采用纯追踪法的无人机对抗,该方法训练的智能无人机胜率超过93%;与传统的TD3、深度确定性策略梯度(DDPG)算法相比,该方法收敛性更快、稳定性更高。 展开更多
关键词 深度强化学习 近距空战 无人机 延迟深度确定性策略梯度
下载PDF
基于深度确定性策略梯度的粒子群算法 被引量:5
13
作者 鲁华祥 尹世远 +2 位作者 龚国良 刘毅 陈刚 《电子科技大学学报》 EI CAS CSCD 北大核心 2021年第2期199-206,共8页
在传统的粒子群优化算法(PSO)中,所有粒子都遵循最初设定的一些参数进行自我探索,这种方案容易导致过早成熟,且易被困于局部最优点。针对以上问题,该文提出了一种基于深度确定性策略梯度的粒子群优化算法(DDPGPSO),通过构造神经网络分... 在传统的粒子群优化算法(PSO)中,所有粒子都遵循最初设定的一些参数进行自我探索,这种方案容易导致过早成熟,且易被困于局部最优点。针对以上问题,该文提出了一种基于深度确定性策略梯度的粒子群优化算法(DDPGPSO),通过构造神经网络分别实现了动作函数和动作价值函数,且利用神经网络可以动态地生成算法运行所需要的参数,降低了人工配置算法的难度。实验表明DDPGPSO相比9种同类算法在收敛速度和寻优精度上均有较大的提升。 展开更多
关键词 自适应惯性权值 收敛因子 深度确定性策略梯度算法 强化学习 群体智能 粒子群优化算法
下载PDF
基于双延迟深度确定性策略梯度的综合能源微网运行优化
14
作者 谢启跃 应雨龙 《济南大学学报(自然科学版)》 CAS 北大核心 2022年第3期301-307,共7页
为了满足综合能源微网运行优化及能量管理的需求,提出基于双延迟深度确定性策略梯度算法的综合能源微网运行优化方法;基于标准化矩阵建模理论,构建一个含冷、热、电供应的综合能源微网数学模型;考虑到综合能源微网中天然气、主电网供电... 为了满足综合能源微网运行优化及能量管理的需求,提出基于双延迟深度确定性策略梯度算法的综合能源微网运行优化方法;基于标准化矩阵建模理论,构建一个含冷、热、电供应的综合能源微网数学模型;考虑到综合能源微网中天然气、主电网供电等相关约束和电力价格的变化,提出以运行成本最小化为目标的双延迟深度确定性策略梯度算法,对各种能源设备的出力情况作出决策,形成合理的能源分配管理方案。仿真结果表明,所提出方法的性能优于非线性算法、深度Q网络算法和深度确定性策略梯度算法,在确保运行成本最小化的同时计算耗时较短。 展开更多
关键词 综合能源微网 运行优化 延迟深度确定性策略梯度 强化学习
下载PDF
DDPG深度强化学习算法在无人船目标追踪与救援中的应用
15
作者 宋雷震 吕东芳 《黑龙江大学工程学报(中英俄文)》 2024年第1期58-64,共7页
为保证海上救援活动的高效性,研究结合深度确定性策略梯度算法(Deep Deterministic Policy Gradient,DDPG)从状态空间、动作空间、奖励函数方面对船只追踪救援目标算法进行设计,并实际应用到无人船追踪救援之中。结果显示DDPG算法的稳... 为保证海上救援活动的高效性,研究结合深度确定性策略梯度算法(Deep Deterministic Policy Gradient,DDPG)从状态空间、动作空间、奖励函数方面对船只追踪救援目标算法进行设计,并实际应用到无人船追踪救援之中。结果显示DDPG算法的稳定成功率接近100%,性能优异。该设计的算法最终回合累积奖励值能够稳定在10左右,而平均时长则能稳定在80 s左右,能够根据周边环境的状态调整自己的运动策略,满足海上救援活动中的紧迫性要求,能为相关领域的研究提供一条新的思路。 展开更多
关键词 无人船 目标追踪 海上救援 深度确定性策略梯度算法(DDPG)
下载PDF
基于深度强化学习的分层自适应PID控制算法
16
作者 余文浩 齐立哲 +1 位作者 梁瀚文 孙云权 《计算机系统应用》 2024年第9期245-252,共8页
比例积分微分(PID)控制在工业控制和机器人控制领域应用非常广泛.然而,其在实际应用中存在参数整定复杂、系统无法精准建模以及对被控对象变化敏感的问题.为了解决这些问题,本文提出了一种基于深度强化学习算法的分层自适应PID控制算法,... 比例积分微分(PID)控制在工业控制和机器人控制领域应用非常广泛.然而,其在实际应用中存在参数整定复杂、系统无法精准建模以及对被控对象变化敏感的问题.为了解决这些问题,本文提出了一种基于深度强化学习算法的分层自适应PID控制算法,即TD3-PID,用于移动机器人的自动控制.其中,上层控制器通过实时观测当前环境状态和系统状态实现对下层PID控制器参数和输出补偿量进行调整,以实时补偿误差从而优化系统性能.本文将所提出的TD3-PID控制器应用于4轮移动机器人轨迹跟踪任务并和其他控制方法进行了真实场景实验对比.结果显示TD3-PID控制器表现出更优越的动态响应性能和抗干扰能力,整体响应误差显著减小,在提高控制系统性能方面具有显著的优势. 展开更多
关键词 深度强化学习 PID算法 自适应控制 确定性策略梯度算法 轨迹跟踪
下载PDF
基于深度强化学习的自适应不确定性经济调度 被引量:59
17
作者 彭刘阳 孙元章 +2 位作者 徐箭 廖思阳 杨丽 《电力系统自动化》 EI CSCD 北大核心 2020年第9期33-42,共10页
当风电、光伏等间歇性电源大规模接入电力系统时,为应对其出力的不确定性,电力系统经济调度模型需建立在对不确定性建模的基础上,建模精确度将直接影响调度结果的精确度。但当系统同时包含风电、光伏和负荷复杂的不确定性时,对系统整体... 当风电、光伏等间歇性电源大规模接入电力系统时,为应对其出力的不确定性,电力系统经济调度模型需建立在对不确定性建模的基础上,建模精确度将直接影响调度结果的精确度。但当系统同时包含风电、光伏和负荷复杂的不确定性时,对系统整体不确定性进行精确建模显得尤为困难。针对这一问题,引入深度强化学习中深度确定性策略梯度算法,避免对复杂的不确定性进行建模,利用其与环境交互、根据反馈学习改进策略的机制,自适应不确定性的变化。为确保算法适用性,进行了模型泛化方法的设计,针对算法稳定性问题进行了感知-学习比例调整和改进经验回放的机制设计。算例结果表明,所提方法能在自适应系统不确定性的基础上,实现任意场景下的电力系统动态经济调度。 展开更多
关键词 间歇性电源 确定性 动态经济调度 深度强化学习 深度确定性策略梯度算法
下载PDF
基于深度强化学习哈里斯鹰算法的路径规划 被引量:1
18
作者 曾宁坤 胡朋 +2 位作者 梁竹关 丁洪伟 杨志军 《电子测量技术》 北大核心 2023年第12期69-76,共8页
哈里斯鹰算法存在容易早熟、陷入局部最优陷阱、稳定性较差等问题。为了提升算法性能,本文提出了一种利用深度确定性策略梯度算法(DDPG)改进的哈里斯鹰算法。该改进将深度强化学习和启发式算法结合,利用深度确定性策略梯度算法训练神经... 哈里斯鹰算法存在容易早熟、陷入局部最优陷阱、稳定性较差等问题。为了提升算法性能,本文提出了一种利用深度确定性策略梯度算法(DDPG)改进的哈里斯鹰算法。该改进将深度强化学习和启发式算法结合,利用深度确定性策略梯度算法训练神经网络,再通过神经网络动态地生成哈里斯鹰算法关键参数,平衡算法全局搜索和局部搜索,并赋予算法后期跳出局部最优陷阱的能力。通过函数优化和路径规划对比实验,实验结果表明,DDPGHHO算法具有一定的泛化性和优秀的稳定性,且在不同环境下均能够搜索到更优路径。 展开更多
关键词 路径规划 深度确定性策略梯度算法 哈里斯鹰算法 深度强化学习
下载PDF
基于DDPG算法的双轮腿机器人运动控制研究 被引量:6
19
作者 陈恺丰 田博睿 +4 位作者 李和清 赵晨阳 陆祖兴 李新德 邓勇 《系统工程与电子技术》 EI CSCD 北大核心 2023年第4期1144-1151,共8页
轮腿式机器人兼具轮式和足式机器人的机动性和灵活性,在多种场景中具有广泛的应用前景。针对双轮腿机器人在崎岖地形运动控制缺陷、高度依赖于精确动力学模型、无法自适应求解等问题,提出一种基于深度确定性策略梯度(deep deterministic... 轮腿式机器人兼具轮式和足式机器人的机动性和灵活性,在多种场景中具有广泛的应用前景。针对双轮腿机器人在崎岖地形运动控制缺陷、高度依赖于精确动力学模型、无法自适应求解等问题,提出一种基于深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法的双轮腿机器人控制方法。首先,分析了双轮腿机器人模型及其模糊动力学模型;然后,使用DDPG算法生成双轮腿机器人在崎岖地面的运动控制策略;最后,为了验证控制器性能,分别进行了3组运动控制对比实验。仿真实验表明,在缺少地面状况先验知识的条件下,采用DDPG算法生成的运动控制策略实现了双轮腿式机器人在崎岖地面快速稳定运动的功能,其平均速度相比双轮机器人提高了约29.2%,姿态角偏移峰值相比双足机器人分别减小了约43.9%、66%、50%。 展开更多
关键词 运动控制 强化学习 轮腿机器人 深度确定性策略梯度算法
下载PDF
基于遗传算法优化的深度强化学习-PI空气舵伺服系统控制策略 被引量:1
20
作者 洪子祺 许文波 +2 位作者 吕晨 欧阳权 王志胜 《机电工程》 CAS 北大核心 2023年第7期1071-1078,共8页
针对传统比例积分控制难以选定控制性能更好参数的问题,以空气舵伺服系统为研究对象,提出了一种基于遗传算法优化的强化学习-PI的控制方法。首先,建立了空气舵伺服系统的数学模型;然后,采用遗传算法优化了PI控制器的初始参数;采用深度... 针对传统比例积分控制难以选定控制性能更好参数的问题,以空气舵伺服系统为研究对象,提出了一种基于遗传算法优化的强化学习-PI的控制方法。首先,建立了空气舵伺服系统的数学模型;然后,采用遗传算法优化了PI控制器的初始参数;采用深度确定性策略梯度算法对当前PI控制器进行了实时整定,从而实现了对空气舵伺服系统进行位置指令控制的功能;最后,在Simulink中通过仿真分析,对所采用的方法应用于空气舵伺服系统的效果进行了验证。研究结果表明:改进的算法在参数摄动时,具备一定的在线稳定性;在空载情况下,所需要的调节时间要小于遗传算法-PI、DDPG-PI与传统PI算法,至少缩短了20%;同时,在负载情况下,相比其他3种方法,改进算法的波动幅值与负载结束后回到稳态时间至少缩短了15%,证明了所使用方法在空气舵伺服系统里的有效性。 展开更多
关键词 伺服系统 比例积分(PI)控制器 遗传算法 深度确定性策略梯度算法 参数优化 SIMULINK
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部