In this paper, for a vertex operator algebra V with an automorphism g of order T, an admissible V-module M and a fixed nonnegative rational number n ∈1/T Z_+, we construct an A_(g,n)(V)-bimodule Ag,n(M) and study its...In this paper, for a vertex operator algebra V with an automorphism g of order T, an admissible V-module M and a fixed nonnegative rational number n ∈1/T Z_+, we construct an A_(g,n)(V)-bimodule Ag,n(M) and study its properties, discuss the connections between bimodule A_(g,n)(M) and intertwining operators. Especially, bimodule A _(g,n)-1T(M) is a natural quotient of A_(g,n)(M) and there is a linear isomorphism between the space IM^k M Mjof intertwining operators and the space of homomorphisms HomA_(g,n)(V)(A_(g,n)(M) A_(g,n)(V)M^j(s), M^k(t)) for s, t ≤ n, M^j, M^k are g-twisted V modules, if V is g-rational.展开更多
We prove the so-called Unitary Hyperbolicity Theorem,a result on hyperbolicity of unitary involutions.The analogous previously known results for the orthogonal and symplectic involutions are formal consequences of the...We prove the so-called Unitary Hyperbolicity Theorem,a result on hyperbolicity of unitary involutions.The analogous previously known results for the orthogonal and symplectic involutions are formal consequences of the unitary one.While the original proofs in the orthogonal and symplectic cases were based on the incompressibility of generalized Severi-Brauer varieties,the proof in the unitary case is based on the incompressibility of their Weil transfers.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.11101269 and 11431010)
文摘In this paper, for a vertex operator algebra V with an automorphism g of order T, an admissible V-module M and a fixed nonnegative rational number n ∈1/T Z_+, we construct an A_(g,n)(V)-bimodule Ag,n(M) and study its properties, discuss the connections between bimodule A_(g,n)(M) and intertwining operators. Especially, bimodule A _(g,n)-1T(M) is a natural quotient of A_(g,n)(M) and there is a linear isomorphism between the space IM^k M Mjof intertwining operators and the space of homomorphisms HomA_(g,n)(V)(A_(g,n)(M) A_(g,n)(V)M^j(s), M^k(t)) for s, t ≤ n, M^j, M^k are g-twisted V modules, if V is g-rational.
文摘We prove the so-called Unitary Hyperbolicity Theorem,a result on hyperbolicity of unitary involutions.The analogous previously known results for the orthogonal and symplectic involutions are formal consequences of the unitary one.While the original proofs in the orthogonal and symplectic cases were based on the incompressibility of generalized Severi-Brauer varieties,the proof in the unitary case is based on the incompressibility of their Weil transfers.