近场动力学(peridynamics, PD)模拟复合材料分层损伤,相较于传统的数值方法有一定优势。双悬臂梁试验(double cantilever beam, DCB)是测量复合材料I型层间断裂韧性 G IC 的标准试验。本文研究了复合材料双悬臂梁试验I型分层扩展过程的...近场动力学(peridynamics, PD)模拟复合材料分层损伤,相较于传统的数值方法有一定优势。双悬臂梁试验(double cantilever beam, DCB)是测量复合材料I型层间断裂韧性 G IC 的标准试验。本文研究了复合材料双悬臂梁试验I型分层扩展过程的三维近场动力学模拟。计算模型选用了球型域的常规态近场动力学复合材料模型,并引入了基于能量的失效判定准则。结果表明,近场动力学模拟的载荷-位移曲线与试验结果吻合得很好,并且模拟结果能够捕捉到DCB试验的“指甲盖形”分层前缘。在此基础上,进一步比较了I型分层扩展过程的近场动力学模拟结果与试验结果,验证了本文采用的复合材料近场动力学模型计算I型分层扩展的有效性。展开更多
文摘近场动力学(peridynamics, PD)模拟复合材料分层损伤,相较于传统的数值方法有一定优势。双悬臂梁试验(double cantilever beam, DCB)是测量复合材料I型层间断裂韧性 G IC 的标准试验。本文研究了复合材料双悬臂梁试验I型分层扩展过程的三维近场动力学模拟。计算模型选用了球型域的常规态近场动力学复合材料模型,并引入了基于能量的失效判定准则。结果表明,近场动力学模拟的载荷-位移曲线与试验结果吻合得很好,并且模拟结果能够捕捉到DCB试验的“指甲盖形”分层前缘。在此基础上,进一步比较了I型分层扩展过程的近场动力学模拟结果与试验结果,验证了本文采用的复合材料近场动力学模型计算I型分层扩展的有效性。