We report a facile way to prepare sulfur(S) doped Ni4/5 Fe1/5-layered double hydroxide(LDH) electrocatalysts for oxygen evolution reaction(OER). The influence of S doping amount on the OER activity of the resulted Ni ...We report a facile way to prepare sulfur(S) doped Ni4/5 Fe1/5-layered double hydroxide(LDH) electrocatalysts for oxygen evolution reaction(OER). The influence of S doping amount on the OER activity of the resulted Ni Fe-LDHs was studied and the optimal surface S content was ca. 0.43 at%. The developed S-doped Ni Fe-LDH exhibits excellent OER catalyst activity in 1.0 M KOH with overpotential of only 257 m V at the current density of 10 m A cm^-2. Moreover, the catalyst could maintain high activity after 30 h stability test. The high activity of the S-doped Ni Fe-LDH catalysts may originate from the synergistic effect between S and the Fe sites. This work provides a simple but efficient way to improve the OER performance of transition metal oxides/(oxy)hydroxides.展开更多
Efficacious regulation of the geometric and electronic structures of carbon nanomaterials via the introduction of defects and their synergy is essential to achieving good electrochemical performance.However,the guidel...Efficacious regulation of the geometric and electronic structures of carbon nanomaterials via the introduction of defects and their synergy is essential to achieving good electrochemical performance.However,the guidelines for designing hybrid materials with advantageous structures and the fundamental understanding of their electrocatalytic mechanisms remain unclear.Herein,superfine Pt and PtCu nanoparticles supported by novel S,N‐co‐doped multi‐walled CNT(MWCNTs)were prepared through the innovative pyrolysis of a poly(3,4‐ethylenedioxythiophene)/polyaniline copolymer as a source of S and N.The uniform wrapping of the copolymer around the MWCNTs provides a high density of evenly distributed defects on the surface after the pyrolysis treatment,facilitating the uniform distribution of ultrafine Pt and PtCu nanoparticles.Remarkably,the Pt_(1)Cu_(2)/SN‐MWCNTs show an obviously larger electroactive surface area and higher mass activity,stability,and CO poisoning resistance in methanol oxidation compared to Pt/SN‐MWCNTs,Pt/S‐MWCNTs,Pt/N‐MWCNTs,and commercial Pt/C.Density functional theory studies confirm that the co‐doping of S and N considerably deforms the CNTs and polarizes the adjacent C atoms.Consequently,both the adsorption of Pt1Cu2 onto the SN‐MWCNTs and the subsequent adsorption of methanol are enhanced;in addition,the catalytic activity of Pt_(1)Cu_(2)/SN‐MWCNTs for methanol oxidation is thermodynamically and kinetically more favorable than that of its CNT and N‐CNT counterparts.This work provides a novel method to fabricate high‐performance fuel cell electrocatalysts with highly dispersed and stable Pt‐based nanoparticles on a carbon substrate.展开更多
文摘We report a facile way to prepare sulfur(S) doped Ni4/5 Fe1/5-layered double hydroxide(LDH) electrocatalysts for oxygen evolution reaction(OER). The influence of S doping amount on the OER activity of the resulted Ni Fe-LDHs was studied and the optimal surface S content was ca. 0.43 at%. The developed S-doped Ni Fe-LDH exhibits excellent OER catalyst activity in 1.0 M KOH with overpotential of only 257 m V at the current density of 10 m A cm^-2. Moreover, the catalyst could maintain high activity after 30 h stability test. The high activity of the S-doped Ni Fe-LDH catalysts may originate from the synergistic effect between S and the Fe sites. This work provides a simple but efficient way to improve the OER performance of transition metal oxides/(oxy)hydroxides.
文摘Efficacious regulation of the geometric and electronic structures of carbon nanomaterials via the introduction of defects and their synergy is essential to achieving good electrochemical performance.However,the guidelines for designing hybrid materials with advantageous structures and the fundamental understanding of their electrocatalytic mechanisms remain unclear.Herein,superfine Pt and PtCu nanoparticles supported by novel S,N‐co‐doped multi‐walled CNT(MWCNTs)were prepared through the innovative pyrolysis of a poly(3,4‐ethylenedioxythiophene)/polyaniline copolymer as a source of S and N.The uniform wrapping of the copolymer around the MWCNTs provides a high density of evenly distributed defects on the surface after the pyrolysis treatment,facilitating the uniform distribution of ultrafine Pt and PtCu nanoparticles.Remarkably,the Pt_(1)Cu_(2)/SN‐MWCNTs show an obviously larger electroactive surface area and higher mass activity,stability,and CO poisoning resistance in methanol oxidation compared to Pt/SN‐MWCNTs,Pt/S‐MWCNTs,Pt/N‐MWCNTs,and commercial Pt/C.Density functional theory studies confirm that the co‐doping of S and N considerably deforms the CNTs and polarizes the adjacent C atoms.Consequently,both the adsorption of Pt1Cu2 onto the SN‐MWCNTs and the subsequent adsorption of methanol are enhanced;in addition,the catalytic activity of Pt_(1)Cu_(2)/SN‐MWCNTs for methanol oxidation is thermodynamically and kinetically more favorable than that of its CNT and N‐CNT counterparts.This work provides a novel method to fabricate high‐performance fuel cell electrocatalysts with highly dispersed and stable Pt‐based nanoparticles on a carbon substrate.