双胞支持向量回归TSVR(twin support vector regression)参数的合理选择严重影响回归结果的准确性。该文采用竞争型智能单粒子算法CISPO(competitive intelligent single particle optimizer)优化参数。CISPO针对智能单粒子算法中各因...双胞支持向量回归TSVR(twin support vector regression)参数的合理选择严重影响回归结果的准确性。该文采用竞争型智能单粒子算法CISPO(competitive intelligent single particle optimizer)优化参数。CISPO针对智能单粒子算法中各因子值难以确定的问题,在每次迭代中根据待优化参数的变化情况自动选择最佳的因子值,同时引入迭代竞争因子,避免算法前期陷入混乱,而后期又能更好地找到全局最优值。将基于CISPO优化的TSVR模型应用到电力系统短期负荷预测中,结果表明,该方法能有效提高负荷预测的速度和精度。展开更多
STATCOM晶闸管阀组本体温度过高,会导致其失效。因此及时、准确地预测出STATCOM晶闸管阀组本体温度对提高STATCOM运行的可靠性至关重要。本文利用最小二乘双支持向量回归机(least square twin support vector regression,LSTSVR)算法,将...STATCOM晶闸管阀组本体温度过高,会导致其失效。因此及时、准确地预测出STATCOM晶闸管阀组本体温度对提高STATCOM运行的可靠性至关重要。本文利用最小二乘双支持向量回归机(least square twin support vector regression,LSTSVR)算法,将STATCOM进水温度、回水温度、进水流量、IGBT模块散热材料的导热系数、STATCOM输出电压、STATCOM输出电流、晶闸管阀组的集电极电流共7个量作为输入量,构建了STATCOM晶闸管阀组本体温度预测模型。与现场实测数据对比的结果表明,利用LSTSVR模型实现了STATCOM晶闸管阀组本体温度的高精度预测,且模型的预测精度优于最小二乘支持向量回归机(least square support vector regression,LSSVR)模型。应用实例也验证了该方法的准确性和有效性。展开更多
文摘双胞支持向量回归TSVR(twin support vector regression)参数的合理选择严重影响回归结果的准确性。该文采用竞争型智能单粒子算法CISPO(competitive intelligent single particle optimizer)优化参数。CISPO针对智能单粒子算法中各因子值难以确定的问题,在每次迭代中根据待优化参数的变化情况自动选择最佳的因子值,同时引入迭代竞争因子,避免算法前期陷入混乱,而后期又能更好地找到全局最优值。将基于CISPO优化的TSVR模型应用到电力系统短期负荷预测中,结果表明,该方法能有效提高负荷预测的速度和精度。
文摘STATCOM晶闸管阀组本体温度过高,会导致其失效。因此及时、准确地预测出STATCOM晶闸管阀组本体温度对提高STATCOM运行的可靠性至关重要。本文利用最小二乘双支持向量回归机(least square twin support vector regression,LSTSVR)算法,将STATCOM进水温度、回水温度、进水流量、IGBT模块散热材料的导热系数、STATCOM输出电压、STATCOM输出电流、晶闸管阀组的集电极电流共7个量作为输入量,构建了STATCOM晶闸管阀组本体温度预测模型。与现场实测数据对比的结果表明,利用LSTSVR模型实现了STATCOM晶闸管阀组本体温度的高精度预测,且模型的预测精度优于最小二乘支持向量回归机(least square support vector regression,LSSVR)模型。应用实例也验证了该方法的准确性和有效性。