由 n^2个不同的自然数排成 n 行 n 列的方阵,如果 n 行中的每一行的 n 个数之和、n 列中的每一列的 n 个数之和、两条对角线中的每一条对角线上的 n 个数之和(共2n+2个和)都相等(都等于所有的 n^2个数的总和的1/n),那么就说这样的方阵是...由 n^2个不同的自然数排成 n 行 n 列的方阵,如果 n 行中的每一行的 n 个数之和、n 列中的每一列的 n 个数之和、两条对角线中的每一条对角线上的 n 个数之和(共2n+2个和)都相等(都等于所有的 n^2个数的总和的1/n),那么就说这样的方阵是 n 阶幻方,幻方中任一行(列或对角线)的 n 个数之和叫做该幻方的幻和.展开更多
文摘由 n^2个不同的自然数排成 n 行 n 列的方阵,如果 n 行中的每一行的 n 个数之和、n 列中的每一列的 n 个数之和、两条对角线中的每一条对角线上的 n 个数之和(共2n+2个和)都相等(都等于所有的 n^2个数的总和的1/n),那么就说这样的方阵是 n 阶幻方,幻方中任一行(列或对角线)的 n 个数之和叫做该幻方的幻和.