The authors prove well posedness in Gevrey classes of Cauchy problem for nonlinear hyper- bolic equations of constant multiplicity with Holder dependence on the time variable.
This paper presents new results for strong solutions and their coincidence sets of the obstacle problem for linear hyperbolic operators of first order. An inequality similar to the LewyStampacchia ones for elliptic an...This paper presents new results for strong solutions and their coincidence sets of the obstacle problem for linear hyperbolic operators of first order. An inequality similar to the LewyStampacchia ones for elliptic and parabolic problems is shown. Under nondegeneracy conditions the stability of the coincidence set is shown with respect to the variation of the data and with respect to approximation by semilinear hyperbolic problems. These results are applied to the asymptotic stability of the evolution problem with respect to the stationary coercive problem with obstacle.展开更多
文摘The authors prove well posedness in Gevrey classes of Cauchy problem for nonlinear hyper- bolic equations of constant multiplicity with Holder dependence on the time variable.
基金Partially supported by the Project FCT-POCTI/34471/MAT/2000
文摘This paper presents new results for strong solutions and their coincidence sets of the obstacle problem for linear hyperbolic operators of first order. An inequality similar to the LewyStampacchia ones for elliptic and parabolic problems is shown. Under nondegeneracy conditions the stability of the coincidence set is shown with respect to the variation of the data and with respect to approximation by semilinear hyperbolic problems. These results are applied to the asymptotic stability of the evolution problem with respect to the stationary coercive problem with obstacle.