期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
C^n上K-双曲区域与开单位球双全纯等价的充要条件
1
作者 吴光旭 金元怀 《北方工业大学学报》 1998年第1期1-4,共4页
在Krantz证明的定理[1]的基础上,讨论了Cn上K-双曲区域与开单位球双全纯等价的充要条件,并证明了此条件.给出了C-体度量与K-体度量的定义;K-双曲区域的定义,将Krantz的结论推广到K-双曲区域所需的引理即引理1及引理2.
关键词 双曲率量 K-曲区域 开单位球 全纯等价
下载PDF
A Super Extension of Kaup-Newell Hierarchy
2
作者 耿献国 吴丽华 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第10期594-598,共5页
With the help of the zero-curvature equation and the super trace identity, we derive a super extensionof the Kaup-Newell hierarchy associated with a 3×3 matrix spectral problem and establish its super bi-Hamilton... With the help of the zero-curvature equation and the super trace identity, we derive a super extensionof the Kaup-Newell hierarchy associated with a 3×3 matrix spectral problem and establish its super bi-Hamiltonianstructures.Furthermore, infinite conservation laws of the super Kaup-Newell equation are obtained by using spectralparameter expansions. 展开更多
关键词 super nonlinear evolution equations super bi-Hamiltonian structures conservation laws
下载PDF
Teichmller space of negatively curved metrics on complex hyperbolic manifolds is not contractible
3
作者 FARRELL F. Thomas SORCAR Gangotryi 《Science China Mathematics》 SCIE CSCD 2017年第4期569-580,共12页
We prove that for all n = 4k- 2 and k 2 there exists a closed smooth complex hyperbolic manifold M with real dimension n having non-trivial π1(T<0(M)). T<0(M) denotes the Teichm¨uller space of all negative... We prove that for all n = 4k- 2 and k 2 there exists a closed smooth complex hyperbolic manifold M with real dimension n having non-trivial π1(T<0(M)). T<0(M) denotes the Teichm¨uller space of all negatively curved Riemannian metrics on M, which is the topological quotient of the space of all negatively curved metrics modulo the space of self-diffeomorphisms of M that are homotopic to the identity. 展开更多
关键词 space of Riemannian metrics negative curvature complex hyperbolic space
原文传递
Evolution Equations of Curvature Tensors Along the Hyperbolic Geometric Flow
4
作者 Weijun LU 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2014年第6期955-968,共14页
The author considers the hyperbolic geometric flow introduced by Kong and Liu. Using the techniques and ideas to deal with the evolution equations along the Ricci flow by Brendle, the author derives the global forms... The author considers the hyperbolic geometric flow introduced by Kong and Liu. Using the techniques and ideas to deal with the evolution equations along the Ricci flow by Brendle, the author derives the global forms of evolution equations for Levi-Civita connection and curvature tensors under the hyperbolic geometric flow. In addition, similarly to the Ricci flow case, it is shown that any solution to tile hyperbolic geometric flow that develops a singularity in finite time has unbounded Ricci curvature. 展开更多
关键词 Hyperbolic geometric flow Evolution equations SINGULARITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部