期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
双层金属纳米板界面能密度的尺寸效应 被引量:6
1
作者 王帅 姚寅 +1 位作者 杨亚政 陈少华 《力学学报》 EI CSCD 北大核心 2017年第5期978-984,共7页
界面能密度是表征纳米复合材料与结构界面力学性质的重要物理量.采用分子动力学方法计算了不同面心立方金属晶体构成的双材料纳米薄板结构的界面能密度,分析了界面晶格结构形貌变化及界面效应对原子势能的影响.结果表明:双材料纳米薄板... 界面能密度是表征纳米复合材料与结构界面力学性质的重要物理量.采用分子动力学方法计算了不同面心立方金属晶体构成的双材料纳米薄板结构的界面能密度,分析了界面晶格结构形貌变化及界面效应对原子势能的影响.结果表明:双材料纳米薄板界面具有周期性褶皱状疏密相间的晶格结构形貌,界面上原子势能亦呈现周期性分布特性,而靠近界面的两侧原子势能与板内原子势能具有明显差异.拉格朗日界面能密度和欧拉界面能密度均随双层薄板厚度的增加而增加,最终趋向于块体双材料结构的界面能密度. 展开更多
关键词 双材料金属界面 分子动力学 界面能密度 尺寸效应 界面形貌
下载PDF
Effect of immersion Ni plating on interface microstructure and mechanical properties of Al/Cu bimetal 被引量:5
2
作者 赵佳蕾 接金川 +3 位作者 陈飞 陈航 李廷举 曹志强 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第6期1659-1665,共7页
A nickel-based coating was deposited on the pure Al substrate by immersion plating,and the Al/Cu bimetals were prepared by diffusion bonding in the temperature range of 450-550 ℃.The interce microstructure and fractu... A nickel-based coating was deposited on the pure Al substrate by immersion plating,and the Al/Cu bimetals were prepared by diffusion bonding in the temperature range of 450-550 ℃.The interce microstructure and fracture surface of Al/Cu joints were studied by scanning electron microscopy(SEM) and X-ray diffraction(XRD).The mechanical properties of the Al/Cu bimetals were measured by tensile shear and microhardness tests.The results show that the Ni interiayer can effectively eliminate the formation of Al-Cu intermetallic compounds.The Al/Ni interface consists of the Al3Ni and Al3Ni2 phases,while it is Ni-Cu solid solution at the Ni/Cu interce.The tensile shear strength of the joints is improved by the addition of Ni interiayer.The joint with Ni interiayer annealed at 500 ℃ exhibits a maximum value of tensile shear strength of 34.7 MPa. 展开更多
关键词 Al/Cu bimetal immersion Ni plating INTERFACE diffusion bonding INTERMETALLICS
下载PDF
Observation of interface of two kinds of bi-metal composite parts prepared by thixo-forging 被引量:4
3
作者 杨昭 周丽 董建雄 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第9期1579-1584,共6页
Two kinds of bi-metal composite parts (Sn-15%Pb and Pb-22%Sn bi-metal system, and Al-7%Si and SiCp/6061 MMC bi-metal system) were prepared by the strain-induced melt activated thixo-forging. The interfaces of the bi... Two kinds of bi-metal composite parts (Sn-15%Pb and Pb-22%Sn bi-metal system, and Al-7%Si and SiCp/6061 MMC bi-metal system) were prepared by the strain-induced melt activated thixo-forging. The interfaces of the bi-metal composites were observed by OM and SEM. The observations show that the semisolid metals keep independence during thixo-forging. The solid phases in the semisolid slurries maintain their original morphologies after thixo-forging. The liquid phases near the interface mix together and form a thin layer. The interfaces are bonded firmly with the metallurgical bonding. No oxide layers are found at the interfaces. Strengths of the interfaces were investigated by the micro-hardness test. The experimental results show that the composite interfaces have high strength. However, the agglomerated enhancing particles cause fine defect on the interface of the Al-7%Si and SiCr/6061 MMC bi-metal composite. 展开更多
关键词 semisolid metal processing bi-metal composite thixo-forming die-forging metal matrix composite
下载PDF
Simulation and experimental verification of interfacial interactions in compound squeeze cast Al/Al-Cu macrocomposite bimetal 被引量:3
4
作者 Mohammad Hossein BABAEE Behzad NIROUMAND +1 位作者 Ali MALEKI Meysam LASHANI ZAND 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第5期950-963,共14页
The objective of this work was to investigate the thermal and mechanical interactions between the two components of a compound squeeze cast macrocomposite bimetal. First, an Al/Al-4.5wt.%Cu macrocomposite bimetal was ... The objective of this work was to investigate the thermal and mechanical interactions between the two components of a compound squeeze cast macrocomposite bimetal. First, an Al/Al-4.5wt.%Cu macrocomposite bimetal was fabricated by compound squeeze casting process. Then, heat transfer, solidification and distribution of the generated stresses along the interface region of the bimetal were analyzed using Thermo-Calc, ProCAST and ANSYS softwares, and structure, copper distribution and microhardness changes across the interface of the bimetal were studied. The results showed no noticeable change in the structure of the Al-4.5wt.%Cu insert and no obvious micromixing and diffusion of copper across the interface. Simulation results were in good agreement with the experimental ones only when an equivalent oxide layer at the interface was defined and its effect on heat transfer was considered. This layer caused up to 50% decrease in local liquid fraction formed on the surface of the insert. Simulation of the generated stresses showed a uniformly distributed stress along the interface which was significantly lower than the compressive strength of the oxide layer, resulting in its good stability during the fabrication process. It was postulated that this continuous oxide layer not only acted as a thermal barrier but prevented the direct metal-metal contact along the interface as well. 展开更多
关键词 Al/Al-Cu macrocomposite BIMETAL compound squeeze casting simulation interface stress
下载PDF
Process optimization,microstructures and mechanical/thermal properties of Cu/Invar bi-metal matrix composites fabricated by spark plasma sintering 被引量:8
5
作者 Qiang-qiang NIE Guo-hong CHEN +2 位作者 Bing WANG Lei YANG Wen-ming TANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第10期3050-3062,共13页
An orthogonal experiment scheme was designed to investigate the effects of the Cu content,compaction pressure,and sintering temperature on the microstructures and mechanical and thermal properties of(30−50)wt.%Cu/Inva... An orthogonal experiment scheme was designed to investigate the effects of the Cu content,compaction pressure,and sintering temperature on the microstructures and mechanical and thermal properties of(30−50)wt.%Cu/Invar bi-metal matrix composites fabricated via spark plasma sintering(SPS).The results indicated that as the Cu content increased from 30 to 50 wt.%,a continuous Cu network gradually appeared,and the density,thermal conductivity(TC)and coefficient of thermal expansion of the composites noticeably increased,but the tensile strength decreased.The increase in the sintering temperature promoted the Cu/Invar interface diffusion,leading to a reduction in the TC but an enhancement in the tensile strength of the composites.The compaction pressure comprehensively affected the thermal properties of the composites.The 50wt.%Cu/Invar composite sintered at 700℃ and 60 MPa had the highest TC(90.7 W/(m·K)),which was significantly higher than the TCs obtained for most of the previously reported Cu/Invar composites. 展开更多
关键词 spark plasma sintering(SPS) Cu/Invar bi-metal composite microstructure interface diffusion mechanical property thermal property
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部