In order to search for a suitable anode material used in zinc electrowinning in place of Pb-Ag alloy,Al/Pb-PANI(polyaniline)-WC(tungsten carbide) composite inert anodes were prepared on aluminum alloy substrate by...In order to search for a suitable anode material used in zinc electrowinning in place of Pb-Ag alloy,Al/Pb-PANI(polyaniline)-WC(tungsten carbide) composite inert anodes were prepared on aluminum alloy substrate by double pulse electrodeposition(DPE) of PANI and WC particles with Pb2+ from an original plating bath.Thereafter,anodic polarization curves,cyclic voltammetry curves and Tafel polarization curves for the composite inert anodes obtained under different PANI concentrations in the original plating bath were measured,and the microstructural features were also investigated by scanning electron microscopy(SEM).The results show that Al/Pb-PANI-WC composite inert anode obtained under PANI concentration of 20 g/L in the original plating bath possesses uniform microstructures and composition distributions,higher electrocatalytic activity,better reversibility of electrode reaction and corrosion resistance in a synthetic zinc electrowinning electrolyte of 50 g/L Zn2+,150 g/L H2SO4 at 35 °C.Compared with Pb-1%Ag alloy,the overpotential of oxygen evolutions for the composite inert anode are decreased by 185 mV and 166 mV,respectively,under 500 A/m2 and 1000 A/m2.展开更多
A novel process of fabricating aluminium matrix composites(AMCs)with requisite properties by dispersing rutile particles in the aluminum matrix was studied.A novel bi-stage stir casting method was employed to prepare ...A novel process of fabricating aluminium matrix composites(AMCs)with requisite properties by dispersing rutile particles in the aluminum matrix was studied.A novel bi-stage stir casting method was employed to prepare composites,by varying the mass fractions of the rutile particles as 1%,2%,3%and 4%in AA6061 matrix.The density,tensile strength,hardness and microstructures of composites were investigated.Bi-stage stir casting method engendered AMCs with uniform distribution of the reinforced rutile particles in the AA6061 matrix.This was confirmed by the enhancement of the properties of AMCs over the parent base material.Rutile-reinforced AMCs exhibited higher tensile strength and hardness as compared with unreinforced parent material.The properties of the composites were enhanced with the increase in the mass fraction of the rutile particles.However,beyond 3 wt.%of rutile particles,the tensile strength decreased.The hardness and tensile strength of the AMCs reinforced with 3 wt.%of rutile were improved by 36%and 14%respectively in comparison with those of matrix alone.展开更多
Bipolar plates for proton exchange membrane fuel cell (PEMFC) where polymer is used as binder and graphite is used as electric filler were prepared by means of compression molding technology. Study on the effects of g...Bipolar plates for proton exchange membrane fuel cell (PEMFC) where polymer is used as binder and graphite is used as electric filler were prepared by means of compression molding technology. Study on the effects of graphite particle size and shape on the bipolar plate performance, such as electrical conductivity, strength, etc. showed that with decrease of graphite particle size, bulk electrical conductivity and thermometric conductivity decreased, but that flexural strength was enhanced. After spherical graphite occurrence in flake-like form, the flexural strength of the bipolar plate was enhanced, electrical conductivity increased but thermal conductivity decreased in direction paralleling pressure direction, and both electrical conductivity and thermometric conductivity reduced in direction perpendicular to pressure direction.展开更多
A one-step overall strategy from surface to bulk was proposed to simultaneously synthesize the Nb-doped and LiNbO_(3)-coated LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2) cathode materials.The incorporation of LiNbO_(3) coating ...A one-step overall strategy from surface to bulk was proposed to simultaneously synthesize the Nb-doped and LiNbO_(3)-coated LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2) cathode materials.The incorporation of LiNbO_(3) coating can regulate the interface and facilitate the diffusion of Li-ions.Simultaneously,the stronger Nb—O bond can effectively suppress Li^(+)/Ni^(2+) cation mixing and strengthen the stability of crystal structure,which helps to mitigate the anisotropic variations of lattice parameters during Li^(+) de/intercalation.The results showed that the dual-modified materials exhibited good structural stability and distinguished electrochemical performance.The optimal NCM-Nb2 sample showed an excellent capacity retention of 90.78%after 100 cycles at 1C rate between 2.7 and 4.3 V,while only 67.90%for the pristine one.Meanwhile,it displayed a superior rate capability of 149.1 mA·h/g at the 10C rate.These results highlight the feasibility of one-step dual modification strategy to synchronously improve the electrochemical performance of Ni-rich layered oxide cathodes.展开更多
To investigate the influence of expansion pretreatment for materials on carbon structure, activated carbons (ACs) were prepared from corncob with/without expansion pretreatment by KOH activation, the structure prope...To investigate the influence of expansion pretreatment for materials on carbon structure, activated carbons (ACs) were prepared from corncob with/without expansion pretreatment by KOH activation, the structure properties of which were determined based on N2 adsorption isotherm at 77 K. The results show that the expansion pretreatment for corncobs is beneficial to the preparation of ACs with high surface area. The specific surface area of the AC derived from corncob with expansion pretreatment (AC-1) is 32.5% larger than that without expansion pretreatment (AC-2). Furthermore, to probe the potential application of corncob-based ACs in electric double-layer capacitor (EDLC), the prepared ACs were used as electrode materials to assemble EDLC, and its electrochemical performance was investi- gated. The results indicate that the specific capacitance of AC-I is 276 F/g at 50 mA/g, which increases by 27% com- pared with that of AC-2 (217 F/g). As electrode materials, AC-1 presents a better electrochemical performance than AC-2, including a higher voltage maintenance ratio and a lower leakage current.展开更多
A new method of manufacturing micro-flow channels on graphite composite bipolar plate(GCBPP) microplaning using specially designed multi-tooth tool is proposed. In this method, several or even dozens of parallel micro...A new method of manufacturing micro-flow channels on graphite composite bipolar plate(GCBPP) microplaning using specially designed multi-tooth tool is proposed. In this method, several or even dozens of parallel micro-flow channels ranging from 100 μm to 500 μm in width can be produced simultaneously. But, edge chippings easily occur on the rib surface of GCBPP during microplaning due to brittleness of graphite composites. Experimental results show that edge chippings result in the increase of contact resistance between bipolar plate and carbon paper at low compaction force. While the edge chippings scarcely exert influence on the contact resistance at high compaction force. Contrary to conventional view, the edge chippings can significantly improve performance of microfuel cell and big edge chippings outperform small edge chippings. In addition, the influence of technical parameters on edge chippings was investigated in order to obtain big, but not oversized edge chippings.展开更多
Activated carbon (AC) was fabricated by using phenolic resin as carbon source, silica gel as inorganic template, KOH as activator. The samples were analyzed by N2 adsorption, scanning electron microscopy (SEM). Cy...Activated carbon (AC) was fabricated by using phenolic resin as carbon source, silica gel as inorganic template, KOH as activator. The samples were analyzed by N2 adsorption, scanning electron microscopy (SEM). Cyclic voltammetry and galvanostatic charge-discharge were used to characterize the electrochemical performance of the samples. The results showed that the pore size was mainly in the range of 0.5 9.0 nm. Supercapacitors based on the sample AC-3 have low equivalent series resistanceb (ESR) and excellent power property.展开更多
In this study, the authors reviewed and compared the existing researches on debonding performance of FRP-Concrete Interface under direct shear firstly. Following that, two determinants of the debonding ultimate bearin...In this study, the authors reviewed and compared the existing researches on debonding performance of FRP-Concrete Interface under direct shear firstly. Following that, two determinants of the debonding ultimate bearing capacity of FRP-Concrete Interface under pure shear are introduced into this study, namely fracture-resisting force at the undamaged area and friction stress transferred along the already debonded surface. The authors deduced the formulae on fracture energy for FRP-Concrete Interface and obtained the values for fracture energy and friction stress at FRP-Concrete Interface based on the experimental results of eight specimens of FRP-Concrete Interface. On the basis of theoretical frame mentioned above, the authors concluded that the friction-resisting stress transferred along the deteriorated bi-material interface is independent of length of FRP bonded onto concrete substrates and concrete strength, but it relies on the tension rigidity (i.e., the layers of the bonding FRP, it is found that the friction stress declines substantially while the layers of FRP increases bonded to concrete substrate). On the contrary, cohesive fracture energy is dependent on length of FRP bonded to concrete substrate and the tension stiffness of bi-material interface. In addition, the percentage of the fracture-resisting force in the ultimate debonding load at the interface decreases with the bonding length of FRP increasing, but increases with the increase of the layers of the FRP.展开更多
To address the dissolution issue and enhance the electrochemical performance of organic electrode materials,herein, a bipolar organic cathode was prepared by in-situ electropolymerization of amino-phenyl carbazole nap...To address the dissolution issue and enhance the electrochemical performance of organic electrode materials,herein, a bipolar organic cathode was prepared by in-situ electropolymerization of amino-phenyl carbazole naphthalene diimide(APCNDI). APCNDI is composed of n-type 1,4,5,8-naphthalene tetracarboxylic diimide that stores Li cations and p-type carbazole groups which react with anions and serve as polymerization sites. Electropolymerization completely eliminated the dissolution problem of APCNDI, and the electropolymerized cathode demonstrated a bipolar reaction with excellent electrochemical performance, stable cycling performance with a capacity retention of 92 mA h g;after1000 cycles, and a superior rate performance of 72 mA h g;at 10 A g;. The bipolar feature and reactions of APCNDI were systematically investigated and verified by multiple characterization techniques. Our findings provide a novel strategy for the design and fabrication of electrodes for high-performance organic batteries.展开更多
Novel and highly durable air cathode electrocatalyst with three dimensional (3D)-clam-shaped structure, MnO2 nanotubes-supported Fe2O3 (Fe2O3/MnO2) composited by carbon nanotubes (CNTs) ((Fe2O3/ MnO2)3/4-(C...Novel and highly durable air cathode electrocatalyst with three dimensional (3D)-clam-shaped structure, MnO2 nanotubes-supported Fe2O3 (Fe2O3/MnO2) composited by carbon nanotubes (CNTs) ((Fe2O3/ MnO2)3/4-(CNTs)1/4) is synthesized using a facile hydrothermal process and a following direct heat- treatment in the air. The morphology and composition of this catalyst are analyzed using scanning elec- tronic microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). The morphology characteristics reveal that flower-like Fe2O3 parti- cles are highly dispersed on both MnO2 nanotubes and CNT surfaces, coupling all three components firmly. Electrochemical measurements indicate that the synergy of catalyst exhibit superior bi- functional catalytic activity for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) as well as stability than Pt/C and lrO2 catalysts. Using these catalysts for air-cathodes, both primary and rechargeable zinc-air batteries (ZABs) are assembled for performance validation. In a primary ZAB, this 3D-clamed catalyst shows a decent open circuit voltage (OCV, -1.48 V) and a high discharge peak power density (349 mW cm 2), corresponding to a coulomhic efficiency of 92%. In a rechargeahle ZABs with this bifunctional catalyst, high OCV (〉1.3 V) and small charge-discharge voltage gap (〈1.1 V) are achieved along with high specific capacity (780 mAh g 1 at 30 mA cm-2) and robust cycle-life (1,390 cycles at cycle profile of 20 mA/10 min).展开更多
基金Project (51004056) supported by the National Natural Science Foundation of ChinaProject (KKZ6201152009) supported by the Opening Foundation of Key Laboratory of Inorganic Coating Materials, ChinaProjects (2011239, 2011240) supported by Analysis and Measurement Research Fund of Kunming University of Science and Technology,China
文摘In order to search for a suitable anode material used in zinc electrowinning in place of Pb-Ag alloy,Al/Pb-PANI(polyaniline)-WC(tungsten carbide) composite inert anodes were prepared on aluminum alloy substrate by double pulse electrodeposition(DPE) of PANI and WC particles with Pb2+ from an original plating bath.Thereafter,anodic polarization curves,cyclic voltammetry curves and Tafel polarization curves for the composite inert anodes obtained under different PANI concentrations in the original plating bath were measured,and the microstructural features were also investigated by scanning electron microscopy(SEM).The results show that Al/Pb-PANI-WC composite inert anode obtained under PANI concentration of 20 g/L in the original plating bath possesses uniform microstructures and composition distributions,higher electrocatalytic activity,better reversibility of electrode reaction and corrosion resistance in a synthetic zinc electrowinning electrolyte of 50 g/L Zn2+,150 g/L H2SO4 at 35 °C.Compared with Pb-1%Ag alloy,the overpotential of oxygen evolutions for the composite inert anode are decreased by 185 mV and 166 mV,respectively,under 500 A/m2 and 1000 A/m2.
文摘A novel process of fabricating aluminium matrix composites(AMCs)with requisite properties by dispersing rutile particles in the aluminum matrix was studied.A novel bi-stage stir casting method was employed to prepare composites,by varying the mass fractions of the rutile particles as 1%,2%,3%and 4%in AA6061 matrix.The density,tensile strength,hardness and microstructures of composites were investigated.Bi-stage stir casting method engendered AMCs with uniform distribution of the reinforced rutile particles in the AA6061 matrix.This was confirmed by the enhancement of the properties of AMCs over the parent base material.Rutile-reinforced AMCs exhibited higher tensile strength and hardness as compared with unreinforced parent material.The properties of the composites were enhanced with the increase in the mass fraction of the rutile particles.However,beyond 3 wt.%of rutile particles,the tensile strength decreased.The hardness and tensile strength of the AMCs reinforced with 3 wt.%of rutile were improved by 36%and 14%respectively in comparison with those of matrix alone.
文摘Bipolar plates for proton exchange membrane fuel cell (PEMFC) where polymer is used as binder and graphite is used as electric filler were prepared by means of compression molding technology. Study on the effects of graphite particle size and shape on the bipolar plate performance, such as electrical conductivity, strength, etc. showed that with decrease of graphite particle size, bulk electrical conductivity and thermometric conductivity decreased, but that flexural strength was enhanced. After spherical graphite occurrence in flake-like form, the flexural strength of the bipolar plate was enhanced, electrical conductivity increased but thermal conductivity decreased in direction paralleling pressure direction, and both electrical conductivity and thermometric conductivity reduced in direction perpendicular to pressure direction.
基金the Regional Innovation and Development Joint Fund of National Natural Science Foundation of China(No.U19A2018)the National Natural Science Foundation of China(No.21703191)+2 种基金Project of Innovation Team of the Ministry of Education,China(No.IRT_17R90)Hunan Provincial Natural Scientific Foundation of China(No.2019JJ50600)Outstanding Youth Project of Hunan Provincial Education Department,China(No.18B076).
文摘A one-step overall strategy from surface to bulk was proposed to simultaneously synthesize the Nb-doped and LiNbO_(3)-coated LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2) cathode materials.The incorporation of LiNbO_(3) coating can regulate the interface and facilitate the diffusion of Li-ions.Simultaneously,the stronger Nb—O bond can effectively suppress Li^(+)/Ni^(2+) cation mixing and strengthen the stability of crystal structure,which helps to mitigate the anisotropic variations of lattice parameters during Li^(+) de/intercalation.The results showed that the dual-modified materials exhibited good structural stability and distinguished electrochemical performance.The optimal NCM-Nb2 sample showed an excellent capacity retention of 90.78%after 100 cycles at 1C rate between 2.7 and 4.3 V,while only 67.90%for the pristine one.Meanwhile,it displayed a superior rate capability of 149.1 mA·h/g at the 10C rate.These results highlight the feasibility of one-step dual modification strategy to synchronously improve the electrochemical performance of Ni-rich layered oxide cathodes.
基金National Natural Science Foundation of China (No. 50902102 and No. 51172160)
文摘To investigate the influence of expansion pretreatment for materials on carbon structure, activated carbons (ACs) were prepared from corncob with/without expansion pretreatment by KOH activation, the structure properties of which were determined based on N2 adsorption isotherm at 77 K. The results show that the expansion pretreatment for corncobs is beneficial to the preparation of ACs with high surface area. The specific surface area of the AC derived from corncob with expansion pretreatment (AC-1) is 32.5% larger than that without expansion pretreatment (AC-2). Furthermore, to probe the potential application of corncob-based ACs in electric double-layer capacitor (EDLC), the prepared ACs were used as electrode materials to assemble EDLC, and its electrochemical performance was investi- gated. The results indicate that the specific capacitance of AC-I is 276 F/g at 50 mA/g, which increases by 27% com- pared with that of AC-2 (217 F/g). As electrode materials, AC-1 presents a better electrochemical performance than AC-2, including a higher voltage maintenance ratio and a lower leakage current.
基金Project(51075155)supported by the National Natural Science Foundation of ChinaProject(2013ZZ017)supported by the Fundamental Research Funds for the Central Universities,China
文摘A new method of manufacturing micro-flow channels on graphite composite bipolar plate(GCBPP) microplaning using specially designed multi-tooth tool is proposed. In this method, several or even dozens of parallel micro-flow channels ranging from 100 μm to 500 μm in width can be produced simultaneously. But, edge chippings easily occur on the rib surface of GCBPP during microplaning due to brittleness of graphite composites. Experimental results show that edge chippings result in the increase of contact resistance between bipolar plate and carbon paper at low compaction force. While the edge chippings scarcely exert influence on the contact resistance at high compaction force. Contrary to conventional view, the edge chippings can significantly improve performance of microfuel cell and big edge chippings outperform small edge chippings. In addition, the influence of technical parameters on edge chippings was investigated in order to obtain big, but not oversized edge chippings.
文摘Activated carbon (AC) was fabricated by using phenolic resin as carbon source, silica gel as inorganic template, KOH as activator. The samples were analyzed by N2 adsorption, scanning electron microscopy (SEM). Cyclic voltammetry and galvanostatic charge-discharge were used to characterize the electrochemical performance of the samples. The results showed that the pore size was mainly in the range of 0.5 9.0 nm. Supercapacitors based on the sample AC-3 have low equivalent series resistanceb (ESR) and excellent power property.
文摘In this study, the authors reviewed and compared the existing researches on debonding performance of FRP-Concrete Interface under direct shear firstly. Following that, two determinants of the debonding ultimate bearing capacity of FRP-Concrete Interface under pure shear are introduced into this study, namely fracture-resisting force at the undamaged area and friction stress transferred along the already debonded surface. The authors deduced the formulae on fracture energy for FRP-Concrete Interface and obtained the values for fracture energy and friction stress at FRP-Concrete Interface based on the experimental results of eight specimens of FRP-Concrete Interface. On the basis of theoretical frame mentioned above, the authors concluded that the friction-resisting stress transferred along the deteriorated bi-material interface is independent of length of FRP bonded onto concrete substrates and concrete strength, but it relies on the tension rigidity (i.e., the layers of the bonding FRP, it is found that the friction stress declines substantially while the layers of FRP increases bonded to concrete substrate). On the contrary, cohesive fracture energy is dependent on length of FRP bonded to concrete substrate and the tension stiffness of bi-material interface. In addition, the percentage of the fracture-resisting force in the ultimate debonding load at the interface decreases with the bonding length of FRP increasing, but increases with the increase of the layers of the FRP.
基金supported by the National Natural Science Foundation of China (51672188 and 52073211)。
文摘To address the dissolution issue and enhance the electrochemical performance of organic electrode materials,herein, a bipolar organic cathode was prepared by in-situ electropolymerization of amino-phenyl carbazole naphthalene diimide(APCNDI). APCNDI is composed of n-type 1,4,5,8-naphthalene tetracarboxylic diimide that stores Li cations and p-type carbazole groups which react with anions and serve as polymerization sites. Electropolymerization completely eliminated the dissolution problem of APCNDI, and the electropolymerized cathode demonstrated a bipolar reaction with excellent electrochemical performance, stable cycling performance with a capacity retention of 92 mA h g;after1000 cycles, and a superior rate performance of 72 mA h g;at 10 A g;. The bipolar feature and reactions of APCNDI were systematically investigated and verified by multiple characterization techniques. Our findings provide a novel strategy for the design and fabrication of electrodes for high-performance organic batteries.
基金supported by the National Natural Science Foundation of China(U1510120)Natural Science Foundation of Shanghai(14ZR1400700)+2 种基金the Project of Introducing Overseas Intelligence High Education of China(2017-2018)the Graduate Thesis Innovation Foundation of Donghua University(EG2017031,EG2016034)the College of Environmental Science and Engineering,State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry,Donghua University
文摘Novel and highly durable air cathode electrocatalyst with three dimensional (3D)-clam-shaped structure, MnO2 nanotubes-supported Fe2O3 (Fe2O3/MnO2) composited by carbon nanotubes (CNTs) ((Fe2O3/ MnO2)3/4-(CNTs)1/4) is synthesized using a facile hydrothermal process and a following direct heat- treatment in the air. The morphology and composition of this catalyst are analyzed using scanning elec- tronic microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). The morphology characteristics reveal that flower-like Fe2O3 parti- cles are highly dispersed on both MnO2 nanotubes and CNT surfaces, coupling all three components firmly. Electrochemical measurements indicate that the synergy of catalyst exhibit superior bi- functional catalytic activity for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) as well as stability than Pt/C and lrO2 catalysts. Using these catalysts for air-cathodes, both primary and rechargeable zinc-air batteries (ZABs) are assembled for performance validation. In a primary ZAB, this 3D-clamed catalyst shows a decent open circuit voltage (OCV, -1.48 V) and a high discharge peak power density (349 mW cm 2), corresponding to a coulomhic efficiency of 92%. In a rechargeahle ZABs with this bifunctional catalyst, high OCV (〉1.3 V) and small charge-discharge voltage gap (〈1.1 V) are achieved along with high specific capacity (780 mAh g 1 at 30 mA cm-2) and robust cycle-life (1,390 cycles at cycle profile of 20 mA/10 min).