高压碳化硅(silicon carbide,SiC)器件因具有耐高压、耐高温、低损耗等优异特性,已成为支撑未来新型电力系统建设的新型电力电子器件。文中基于自主研制的18kV/12.5A高压SiC绝缘栅双极型晶体管(insulated gate bipolar transistor,IGBT...高压碳化硅(silicon carbide,SiC)器件因具有耐高压、耐高温、低损耗等优异特性,已成为支撑未来新型电力系统建设的新型电力电子器件。文中基于自主研制的18kV/12.5A高压SiC绝缘栅双极型晶体管(insulated gate bipolar transistor,IGBT)芯片,提出18kV SiC IGBT单芯片子模组及10芯片并联封装设计方案,研制18kV/125A SiC IGBT器件,功率等级达到国际最高水平。搭建高压碳化硅功率器件绝缘、静态特性和动态特性测试平台,测试单芯片子模组及10芯片并联器件的绝缘及动态特性,18kV/125A SiC IGBT器件具备18kV静态耐压且可以在13kV直流母线电压条件下关断130A电流,验证了所研制器件的高压绝缘及高压开关能力。此外,采用18kV/125A SiC IGBT器件串联搭建24kV换流阀半桥功率模块,提出器件串联均压方法,完成半桥功率模块的1min静态耐压试验和开关试验验证,结果表明,所研制的18kV/125A SiC IGBT器件运行良好,满足串联应用要求,同时,所提的均压方案可以保证半桥功率模块静态电压不均衡和动态电压不均衡程度分别低于0.4%和15%。该研究可以为基于SiC IGBT器件在柔性直流输电工程中的应用奠定基础。展开更多
A compact model for the integrated inversion charge density Qi in double-gate (DG-) MOSFETs is developed. For nanoscale applications,quantum confinement of the inversion carriers must be taken into account. Based on...A compact model for the integrated inversion charge density Qi in double-gate (DG-) MOSFETs is developed. For nanoscale applications,quantum confinement of the inversion carriers must be taken into account. Based on the previous work of Ge, we establish an expression for the surface potential with respect to Qi, and form an implicit equation, from which Qi can be solved. Results predicted by our model are compared to published data as well as results from Schred,a popular 1D numerical solver that solves the Poisson's and Schr6dinger equa- tions self-consistently. Good agreement is obtained for a wide range of silicon layer thickness,confirming the supe- riority of this model over previous work in this field.展开更多
A surface potential-based model for undoped symmetric double-gate MOSFETs is derived by solving Poisson's equation to obtain the relationship between the surface potential and voltage in the channel region in a self-...A surface potential-based model for undoped symmetric double-gate MOSFETs is derived by solving Poisson's equation to obtain the relationship between the surface potential and voltage in the channel region in a self-consistent way. The drain current expression is then obtained from Pao-Sah's double integral. The model consists of one set of surface potential equations,and the analytic drain current can be evaluated from the surface potential at the source and drain ends. It is demonstrated that the model is valid for all operation regions of the double-gate MOSFETs and without any need for simplification (e. g., by using the charge sheet assumption) or auxiliary fitting functions. The model has been verified by extensive comparisons with 2D numerical simulation under different operation conditions with different geometries. The consistency between the model calculation and numerical simulation demonstrates the accuracy of the model.展开更多
文摘高压碳化硅(silicon carbide,SiC)器件因具有耐高压、耐高温、低损耗等优异特性,已成为支撑未来新型电力系统建设的新型电力电子器件。文中基于自主研制的18kV/12.5A高压SiC绝缘栅双极型晶体管(insulated gate bipolar transistor,IGBT)芯片,提出18kV SiC IGBT单芯片子模组及10芯片并联封装设计方案,研制18kV/125A SiC IGBT器件,功率等级达到国际最高水平。搭建高压碳化硅功率器件绝缘、静态特性和动态特性测试平台,测试单芯片子模组及10芯片并联器件的绝缘及动态特性,18kV/125A SiC IGBT器件具备18kV静态耐压且可以在13kV直流母线电压条件下关断130A电流,验证了所研制器件的高压绝缘及高压开关能力。此外,采用18kV/125A SiC IGBT器件串联搭建24kV换流阀半桥功率模块,提出器件串联均压方法,完成半桥功率模块的1min静态耐压试验和开关试验验证,结果表明,所研制的18kV/125A SiC IGBT器件运行良好,满足串联应用要求,同时,所提的均压方案可以保证半桥功率模块静态电压不均衡和动态电压不均衡程度分别低于0.4%和15%。该研究可以为基于SiC IGBT器件在柔性直流输电工程中的应用奠定基础。
文摘A compact model for the integrated inversion charge density Qi in double-gate (DG-) MOSFETs is developed. For nanoscale applications,quantum confinement of the inversion carriers must be taken into account. Based on the previous work of Ge, we establish an expression for the surface potential with respect to Qi, and form an implicit equation, from which Qi can be solved. Results predicted by our model are compared to published data as well as results from Schred,a popular 1D numerical solver that solves the Poisson's and Schr6dinger equa- tions self-consistently. Good agreement is obtained for a wide range of silicon layer thickness,confirming the supe- riority of this model over previous work in this field.
基金the National Natural Science Foundation of China(No.90607017)the Competitive Ear marked Grant 611207 from the Research Grant Council of Hong Kong SARthe International Joint Research Program(NEDO Grant)from Japan(No.NEDOO5/06.EG01)~~
文摘A surface potential-based model for undoped symmetric double-gate MOSFETs is derived by solving Poisson's equation to obtain the relationship between the surface potential and voltage in the channel region in a self-consistent way. The drain current expression is then obtained from Pao-Sah's double integral. The model consists of one set of surface potential equations,and the analytic drain current can be evaluated from the surface potential at the source and drain ends. It is demonstrated that the model is valid for all operation regions of the double-gate MOSFETs and without any need for simplification (e. g., by using the charge sheet assumption) or auxiliary fitting functions. The model has been verified by extensive comparisons with 2D numerical simulation under different operation conditions with different geometries. The consistency between the model calculation and numerical simulation demonstrates the accuracy of the model.