The bipolar theory of field-effect transistor is introduced to replace the 55-year-old classic unipolar theory invented by Shockley in 1952 in order to account for the characteristics observed in recent double-gate na...The bipolar theory of field-effect transistor is introduced to replace the 55-year-old classic unipolar theory invented by Shockley in 1952 in order to account for the characteristics observed in recent double-gate nanometer silicon MOS field-effect transistors. Two electron and two hole surface channels are simultaneously present in all channel current ranges. Output and transfer characteristics are computed over practical base and gate oxide thicknesses. The bipolar theory corroborates well with experimental data reported recently for FinFETs with metal/silicon and p/n junction source/drain contacts. Single-device realization of CMOS inverter and SRAM memory circuit functions are recognized.展开更多
This paper describes the short channel theory of the bipolar field-effect transistor (BiFET) by partitioning the transistor into two sections,the source and drain sections,each can operate as the electron or hole em...This paper describes the short channel theory of the bipolar field-effect transistor (BiFET) by partitioning the transistor into two sections,the source and drain sections,each can operate as the electron or hole emitter or collector under specific combinations of applied terminal voltages. Analytical solution is obtained in the source and drain sections by separating the two-dimensional trap-free Shockley Equations into two one-dimensional equations parametrically coupled via the surface-electric-potential and by using electron current continuity and hole current continuity at the boundary between the emitter and collector sections. Total and electron-hole-channel components of the output and transfer currents and conductances, and the electrical lengths of the two sections are computed and presented in graphs as a function of the D. C. terminal voltages for the model transistor with two identical and connected metal-oxide-silicon-gates (MOS-gates) on a thin pure-silicon base over practical ranges of thicknesses of the silicon base and gate oxide. Deviations of the long physical channel currents and conductances from those of the short electrical channels are reported.展开更多
A surface potential-based model for undoped symmetric double-gate MOSFETs is derived by solving Poisson's equation to obtain the relationship between the surface potential and voltage in the channel region in a self-...A surface potential-based model for undoped symmetric double-gate MOSFETs is derived by solving Poisson's equation to obtain the relationship between the surface potential and voltage in the channel region in a self-consistent way. The drain current expression is then obtained from Pao-Sah's double integral. The model consists of one set of surface potential equations,and the analytic drain current can be evaluated from the surface potential at the source and drain ends. It is demonstrated that the model is valid for all operation regions of the double-gate MOSFETs and without any need for simplification (e. g., by using the charge sheet assumption) or auxiliary fitting functions. The model has been verified by extensive comparisons with 2D numerical simulation under different operation conditions with different geometries. The consistency between the model calculation and numerical simulation demonstrates the accuracy of the model.展开更多
文摘The bipolar theory of field-effect transistor is introduced to replace the 55-year-old classic unipolar theory invented by Shockley in 1952 in order to account for the characteristics observed in recent double-gate nanometer silicon MOS field-effect transistors. Two electron and two hole surface channels are simultaneously present in all channel current ranges. Output and transfer characteristics are computed over practical base and gate oxide thicknesses. The bipolar theory corroborates well with experimental data reported recently for FinFETs with metal/silicon and p/n junction source/drain contacts. Single-device realization of CMOS inverter and SRAM memory circuit functions are recognized.
文摘This paper describes the short channel theory of the bipolar field-effect transistor (BiFET) by partitioning the transistor into two sections,the source and drain sections,each can operate as the electron or hole emitter or collector under specific combinations of applied terminal voltages. Analytical solution is obtained in the source and drain sections by separating the two-dimensional trap-free Shockley Equations into two one-dimensional equations parametrically coupled via the surface-electric-potential and by using electron current continuity and hole current continuity at the boundary between the emitter and collector sections. Total and electron-hole-channel components of the output and transfer currents and conductances, and the electrical lengths of the two sections are computed and presented in graphs as a function of the D. C. terminal voltages for the model transistor with two identical and connected metal-oxide-silicon-gates (MOS-gates) on a thin pure-silicon base over practical ranges of thicknesses of the silicon base and gate oxide. Deviations of the long physical channel currents and conductances from those of the short electrical channels are reported.
基金the National Natural Science Foundation of China(No.90607017)the Competitive Ear marked Grant 611207 from the Research Grant Council of Hong Kong SARthe International Joint Research Program(NEDO Grant)from Japan(No.NEDOO5/06.EG01)~~
文摘A surface potential-based model for undoped symmetric double-gate MOSFETs is derived by solving Poisson's equation to obtain the relationship between the surface potential and voltage in the channel region in a self-consistent way. The drain current expression is then obtained from Pao-Sah's double integral. The model consists of one set of surface potential equations,and the analytic drain current can be evaluated from the surface potential at the source and drain ends. It is demonstrated that the model is valid for all operation regions of the double-gate MOSFETs and without any need for simplification (e. g., by using the charge sheet assumption) or auxiliary fitting functions. The model has been verified by extensive comparisons with 2D numerical simulation under different operation conditions with different geometries. The consistency between the model calculation and numerical simulation demonstrates the accuracy of the model.