A two-dimensional numerical model was used to explain the liquefaction mechanism of double sand lenses and the corresponding soil deformation due to the cyclic loading. Moreover, in order to investigate the influences...A two-dimensional numerical model was used to explain the liquefaction mechanism of double sand lenses and the corresponding soil deformation due to the cyclic loading. Moreover, in order to investigate the influences of the soil characteristics and input loading data a parametric study was carried out on the essential parameters affecting the soil settlement, and so the variation of these parameters with the corresponding displacements was mainly examined. At last, the results obtained from the numerical analyses of double sand lenses and a continuous sand layer with similar characteristics were compared with those of an estimating method proposed by ISHIHARA and YOSHIMINE. The comparisons show that the settlements due to liquefaction of the continuous sand layer in both numerical and the estimating method are in a good agreement with and are obviously greater than those of double sand lenses.展开更多
文摘A two-dimensional numerical model was used to explain the liquefaction mechanism of double sand lenses and the corresponding soil deformation due to the cyclic loading. Moreover, in order to investigate the influences of the soil characteristics and input loading data a parametric study was carried out on the essential parameters affecting the soil settlement, and so the variation of these parameters with the corresponding displacements was mainly examined. At last, the results obtained from the numerical analyses of double sand lenses and a continuous sand layer with similar characteristics were compared with those of an estimating method proposed by ISHIHARA and YOSHIMINE. The comparisons show that the settlements due to liquefaction of the continuous sand layer in both numerical and the estimating method are in a good agreement with and are obviously greater than those of double sand lenses.