Cobalt-based oxides,with high abundance,good stability and excellent catalytic performance,are regarded as promising photocatalysts for artificial photosynthetic systems to alleviate foreseeable energy shortages and g...Cobalt-based oxides,with high abundance,good stability and excellent catalytic performance,are regarded as promising photocatalysts for artificial photosynthetic systems to alleviate foreseeable energy shortages and global warming.Herein,for the first time,a series of novel spongy porous CDs@CoOx materials were synthesized to act as an efficient and stable bifunctional photocatalyst for water oxidation and CO2 reduction.Notably,the preparation temperatures visibly influence the morphologies and photocatalytic performances of the CDs@CoOx.Under the optimal conditions,a maximum O2 yield of 40.4% and pretty apparent quantum efficiency(AQE)of 58.6% at 460 nm were obtained over CDs@CoOx-300 for water oxidation.Similarly,the optimized sample CDs@CoOx-300 manifests significant enhancement on the CO2-to-CO conversion with a high selectivity of 89.3% and CO generation rate of 8.1μmol/h,which is superior to most previous cobalt-based catalysts for CO2 reduction.The composite CDs@CoOx-300 not only exposes more active sites but also facilitates electron transport,which results in excellent photocatalytic activity.In addition,the boosted photocatalytic behavior is attributed to the synergistic effect between CoOx and CDs,which was verified by the photocatalytic activity control experiments and electrochemical characterization.The work offers a novel strategy to fabricate a high performance bifunctional photocatalyst for water oxidation and CO2 reduction.展开更多
Binuclear ruthenium complexes bearing the2,2'‐bipyridine‐6,6'‐dicarboxylate(bda)ligand have been demonstrated to be highly active catalysts towards water oxidation with CeIV as an oxidant.However,the cataly...Binuclear ruthenium complexes bearing the2,2'‐bipyridine‐6,6'‐dicarboxylate(bda)ligand have been demonstrated to be highly active catalysts towards water oxidation with CeIV as an oxidant.However,the catalytic properties of ruthenium dimers have not yet been explored for visible light‐driven water oxidation.Herein,the photocatalytic performance of a dipyridyl propane‐bridged ruthenium dimer2was investigated in comparison with its monomeric precursor,[Ru(bda)(pic)2](1),in CH3CN/phosphate buffer mixed solvent in a three‐component system including a photosensitizer and a sacrificial electron acceptor.Experimental results showed that the activity of each catalyst was strongly dependent on the content of CH3CN in the phosphate buffer,which not only affected the driving force for water oxidation,but also altered the kinetics of the reaction,probably through different mechanisms associated with the O–O bond formation.As a result,dimer2showedsignificantly higher activity than monomer1in the solvent containing a low content of CH3CN,and comparable activities were attained with a high content of CH3CN in the solvent.Under the optimal conditions,complex2achieved a turnover number of638for photocatalytic O2evolution.展开更多
文摘Cobalt-based oxides,with high abundance,good stability and excellent catalytic performance,are regarded as promising photocatalysts for artificial photosynthetic systems to alleviate foreseeable energy shortages and global warming.Herein,for the first time,a series of novel spongy porous CDs@CoOx materials were synthesized to act as an efficient and stable bifunctional photocatalyst for water oxidation and CO2 reduction.Notably,the preparation temperatures visibly influence the morphologies and photocatalytic performances of the CDs@CoOx.Under the optimal conditions,a maximum O2 yield of 40.4% and pretty apparent quantum efficiency(AQE)of 58.6% at 460 nm were obtained over CDs@CoOx-300 for water oxidation.Similarly,the optimized sample CDs@CoOx-300 manifests significant enhancement on the CO2-to-CO conversion with a high selectivity of 89.3% and CO generation rate of 8.1μmol/h,which is superior to most previous cobalt-based catalysts for CO2 reduction.The composite CDs@CoOx-300 not only exposes more active sites but also facilitates electron transport,which results in excellent photocatalytic activity.In addition,the boosted photocatalytic behavior is attributed to the synergistic effect between CoOx and CDs,which was verified by the photocatalytic activity control experiments and electrochemical characterization.The work offers a novel strategy to fabricate a high performance bifunctional photocatalyst for water oxidation and CO2 reduction.
基金supported by the National Basic Research Program of China (973 Program, 2014CB239402)the National Natural Science Foundation of China (21476043)+1 种基金the Fundamental Research Funds for the Central Universities (DUT17ZD204)the Swedish Energy Agency and K&A Wallenberg Foundation~~
文摘Binuclear ruthenium complexes bearing the2,2'‐bipyridine‐6,6'‐dicarboxylate(bda)ligand have been demonstrated to be highly active catalysts towards water oxidation with CeIV as an oxidant.However,the catalytic properties of ruthenium dimers have not yet been explored for visible light‐driven water oxidation.Herein,the photocatalytic performance of a dipyridyl propane‐bridged ruthenium dimer2was investigated in comparison with its monomeric precursor,[Ru(bda)(pic)2](1),in CH3CN/phosphate buffer mixed solvent in a three‐component system including a photosensitizer and a sacrificial electron acceptor.Experimental results showed that the activity of each catalyst was strongly dependent on the content of CH3CN in the phosphate buffer,which not only affected the driving force for water oxidation,but also altered the kinetics of the reaction,probably through different mechanisms associated with the O–O bond formation.As a result,dimer2showedsignificantly higher activity than monomer1in the solvent containing a low content of CH3CN,and comparable activities were attained with a high content of CH3CN in the solvent.Under the optimal conditions,complex2achieved a turnover number of638for photocatalytic O2evolution.