针对实际场景中辐射源数据稀缺造成的小样本问题,提出了一种基于自监督和双流融合的小样本雷达辐射源识别方法。首先利用高斯分布噪声、莱斯多径衰落、设计时钟偏移信号等减损方法,基于有限数量的真实样本构建类均衡辐射源信号样本集。...针对实际场景中辐射源数据稀缺造成的小样本问题,提出了一种基于自监督和双流融合的小样本雷达辐射源识别方法。首先利用高斯分布噪声、莱斯多径衰落、设计时钟偏移信号等减损方法,基于有限数量的真实样本构建类均衡辐射源信号样本集。基于增强数据集,提出一种信号时间序列与时频图的双流特征融合模型。采用对比学习方法构建双流特征融合模型的自监督上游任务,以提升在有限标签数据情况下信号多域特征的表征能力与泛化能力。实验结果证明,该方法在小样本条件下能够有效地实现较好的辐射源类型识别能力,在目标域每个类别100个样本限制下,识别精度达到97.1%,与传统一维特征方法和基于长短期记忆(Long Short Term Memory,LSTM)的方法相比均有较大提升。展开更多
文摘针对实际场景中辐射源数据稀缺造成的小样本问题,提出了一种基于自监督和双流融合的小样本雷达辐射源识别方法。首先利用高斯分布噪声、莱斯多径衰落、设计时钟偏移信号等减损方法,基于有限数量的真实样本构建类均衡辐射源信号样本集。基于增强数据集,提出一种信号时间序列与时频图的双流特征融合模型。采用对比学习方法构建双流特征融合模型的自监督上游任务,以提升在有限标签数据情况下信号多域特征的表征能力与泛化能力。实验结果证明,该方法在小样本条件下能够有效地实现较好的辐射源类型识别能力,在目标域每个类别100个样本限制下,识别精度达到97.1%,与传统一维特征方法和基于长短期记忆(Long Short Term Memory,LSTM)的方法相比均有较大提升。