为提高双滤波器结构(Dual filter structure,DFS)一级滤波器W1(k)的收敛速度,本文提出一种改进的Haar子带变换(Partial Haar transform,PHT)算法。新算法先对W1(k)的输入信号进行PHT变换以压缩滤波器长度;然后通过优化收敛步长使后验误...为提高双滤波器结构(Dual filter structure,DFS)一级滤波器W1(k)的收敛速度,本文提出一种改进的Haar子带变换(Partial Haar transform,PHT)算法。新算法先对W1(k)的输入信号进行PHT变换以压缩滤波器长度;然后通过优化收敛步长使后验误差最小化以提高收敛速度;最后通过分时保存、维护算法的归一化因子以降低算法计算复杂度。通过提高W1(k)的收敛速度,新算法可以更少的迭代次数获得稳定的延时估计,从而提高DFS的整体收敛速度。以回声消除为应用背景对新算法进行实验仿真,实验结果表明新算法性能显著优于其他传统的自适应算法。展开更多
The microstrip dual-mode filter (DMF) with conventional coupling structure has some limitations in- eluding the port coupling strength limited by fabrication tolerance and the existence of serious second order spuri...The microstrip dual-mode filter (DMF) with conventional coupling structure has some limitations in- eluding the port coupling strength limited by fabrication tolerance and the existence of serious second order spuri- ous band. Therefore, a novel DMF with a offset-feed bended coupling structure and a stepped-impedance dual- mode resonator is proposed for coupling enhancement and spurious response suppression. Based on the analysis of the change of spur frequencies and the current distribution of spur resonant modes, all spurs near passband of the cascaded DMF can be fully suppressed by optimizing the structure parameters of parasite resonators, which bene- fits from the inherent well-controlled transmission zeros. Experimental results show that the proposed DMF ex- hibits lower insertion loss ,much sharper rate of cutoff and wider spur-free stop band compared with conventional DMF. This design is applicable for spur suppression in wideband communication.展开更多
An all-digital hybrid current regulation scheme for the single-phase shunt active power filter (APF) is presented. The proposed hybrid current control scheme integrates the deadbeat control and the dual-mode structu...An all-digital hybrid current regulation scheme for the single-phase shunt active power filter (APF) is presented. The proposed hybrid current control scheme integrates the deadbeat control and the dual-mode structure repetitive control (DMRC) so that it can offer superior steady-state performance and good transient features. Unlike the conventional schemes, the proposed scheme-based APF can compensate both the odd and the even order harmonics in grid. The detailed design criteria and the stability analysis of the proposed hybrid current controller are presented. Moreover, an improved structure which incorporates the proposed hybrid controller and the resonant controller for tracking specific order harmonics is given. The relationships between the resonant controller and different repetitive control schemes are discussed. Experimental results verify the effectiveness and advantages of the proposed hybrid control scheme.展开更多
文摘为提高双滤波器结构(Dual filter structure,DFS)一级滤波器W1(k)的收敛速度,本文提出一种改进的Haar子带变换(Partial Haar transform,PHT)算法。新算法先对W1(k)的输入信号进行PHT变换以压缩滤波器长度;然后通过优化收敛步长使后验误差最小化以提高收敛速度;最后通过分时保存、维护算法的归一化因子以降低算法计算复杂度。通过提高W1(k)的收敛速度,新算法可以更少的迭代次数获得稳定的延时估计,从而提高DFS的整体收敛速度。以回声消除为应用背景对新算法进行实验仿真,实验结果表明新算法性能显著优于其他传统的自适应算法。
基金Supported by the National Natural Science Foundation of China under Grant(60921063)the National Program on Key Basic Research Project(973Program)(2010CB327400)the National Science and Technology Major Project(2010ZX03007-002-01)~~
文摘The microstrip dual-mode filter (DMF) with conventional coupling structure has some limitations in- eluding the port coupling strength limited by fabrication tolerance and the existence of serious second order spuri- ous band. Therefore, a novel DMF with a offset-feed bended coupling structure and a stepped-impedance dual- mode resonator is proposed for coupling enhancement and spurious response suppression. Based on the analysis of the change of spur frequencies and the current distribution of spur resonant modes, all spurs near passband of the cascaded DMF can be fully suppressed by optimizing the structure parameters of parasite resonators, which bene- fits from the inherent well-controlled transmission zeros. Experimental results show that the proposed DMF ex- hibits lower insertion loss ,much sharper rate of cutoff and wider spur-free stop band compared with conventional DMF. This design is applicable for spur suppression in wideband communication.
基金The National Basic Research Program of China(973 Program)(No.2013CB035603)the National Natural Science Foundation of China(No.51007008,51137001)+1 种基金the Ph.D.Programs Foundation of Ministry of Education of China(No.20100092120043)the Fundamental Research Funds for the Central Universities
文摘An all-digital hybrid current regulation scheme for the single-phase shunt active power filter (APF) is presented. The proposed hybrid current control scheme integrates the deadbeat control and the dual-mode structure repetitive control (DMRC) so that it can offer superior steady-state performance and good transient features. Unlike the conventional schemes, the proposed scheme-based APF can compensate both the odd and the even order harmonics in grid. The detailed design criteria and the stability analysis of the proposed hybrid current controller are presented. Moreover, an improved structure which incorporates the proposed hybrid controller and the resonant controller for tracking specific order harmonics is given. The relationships between the resonant controller and different repetitive control schemes are discussed. Experimental results verify the effectiveness and advantages of the proposed hybrid control scheme.