In present work,a helical double tube heat exchanger is proposed in which an advanced turbulator with blades,semi-conical part,and two holes is inserted in inner section.Two geometrical parameters,including angle of t...In present work,a helical double tube heat exchanger is proposed in which an advanced turbulator with blades,semi-conical part,and two holes is inserted in inner section.Two geometrical parameters,including angle of turbulator’s blades(θ) and number of turbulator’s blades(N),are considered.Results indicated that firstly,the best thermal stratification is achieved at θ=180°.Furthermore,at the lowest studied mass flow rate(m = 8 × 10^(-3) kg/s),heat transfer coefficient of turbulator with blade angle of 180° is 130.77%,25%,and 36.36% higher than cases including without turbulator,with turbulator with blade angle of θ =240°,and θ =360°,respectively.Moreover,case with N=12 showed the highest overall performance.At the highest studied mass flow rate(m = 5.842 × 10^(-2) kg/s),heat transfer coefficient for case with N=12 is up to 54.76%,27.45%,and 6.56% higher than cases including without turbulator,with turbulator with N=6,and with turbulator with N=9,respectively.展开更多
A novel lateral insulated gate bipolar transistor on a silicon-on-insulator substrate SOI-LIGBT with a special low-doped P-well structure is proposed.The P-well structure is added to attach the P-body under the channe...A novel lateral insulated gate bipolar transistor on a silicon-on-insulator substrate SOI-LIGBT with a special low-doped P-well structure is proposed.The P-well structure is added to attach the P-body under the channel so as to reduce the linear anode current degradation without additional process.The influence of the length and depth of the P-well on the hot-carrier HC reliability of the SOI-LIGBT is studied.With the increase in the length of the P-well the perpendicular electric field peak and the impact ionization peak diminish resulting in the reduction of the hot-carrier degradation. In addition the impact ionization will be weakened with the increase in the depth of the P-well which also makes the hot-carrier degradation decrease.Considering the effect of the low-doped P-well and the process windows the length and depth of the P-well are both chosen as 2 μm.展开更多
Using a friction stir additive manufacturing(FSAM)process,the fabrication of a two-layer aluminum−copper pipe was studied experimentally and numerically.For this purpose,by presenting a 3D thermo-mechanical model in A...Using a friction stir additive manufacturing(FSAM)process,the fabrication of a two-layer aluminum−copper pipe was studied experimentally and numerically.For this purpose,by presenting a 3D thermo-mechanical model in ABAQUS software,the temperature and strain distributions during the process were studied.The simulation results show that,although the rotational-to-traverse speed ratio with a good approximation can predict the heat input during welding,it is not a precise measure to predict the occurrence of defects in the weld cross-section.There is a good agreement between the predicted and experimental thermal results,and the maximum relative error is 4.1%in estimating the maximum temperature during welding.Due to heat and severe plastic deformation in the stir zone,the aluminum−copper intermetallic compounds(CuAl_(2) and Cu_(9)Al_(4))are formed.The maximum hardness in the stir zone is 301.4 HV_(0.1) in sample welded with an overlap of−0.5 mm.The ultimate tensile strength and elongation of the two-layer pipe fabricated by friction stir additive manufacturing are(319.52±2.31)MPa and 19.47%,respectively.展开更多
In order to explain the oscillation heat transfer dynamics of closed loop oscillation heat pipe (CLOHP) with two liquid slugs,analysis on the forces and heat transfer process of the partial gas-liquid phase system inv...In order to explain the oscillation heat transfer dynamics of closed loop oscillation heat pipe (CLOHP) with two liquid slugs,analysis on the forces and heat transfer process of the partial gas-liquid phase system involving multiple parameters was carried out,and a new type oscillation heat transfer dynamic model of the CLOHP was set up based on conservation laws of mass,momentum and energy.Application results indicate that its oscillation heat transfer dynamics features depend largely on the filling rate,pipe diameter and difference in temperature.Besides,oscillation intensity and transfer performance can be improved to a large extent by increasing the temperature difference properly and enlarging the pipe diameter within a certain range under a certain filling rate.展开更多
A boundary element method for simulating thermocapillary convection in a two-layer immiscible fluid system with flat and free interface has been developed.The divergence theorem is applied to the non-linear convective...A boundary element method for simulating thermocapillary convection in a two-layer immiscible fluid system with flat and free interface has been developed.The divergence theorem is applied to the non-linear convective volume integral of the boundary element formulation with the pressure penalty function.Consequently,velocity gradients are eliminated and the complete formulation is written in terms of velocity.This avoids the difficulty of convective discretizations and provides considerable reductions in storage and computational requirements while improving accuracy.In this paper,we give the influence of different parameters(Marangoni number, Reynolds number)on thermocapillary convection in cavity with two-layer immiscible fluids.As shown by the numerical results,when the physical parameters between liquid encapsulant and melt are chosen appropriately, the detrimental flow in the bottom melt layer can be greatly suppressed.The influence of the free interface on thermocapillary convection is also shown.展开更多
Using embedded thermal sensors, dynamic thermal management(DTM) techniques measure runtime thermal behavior of high-performance microprocessors so as to prevent thermal runaway situations. The number of placed sensors...Using embedded thermal sensors, dynamic thermal management(DTM) techniques measure runtime thermal behavior of high-performance microprocessors so as to prevent thermal runaway situations. The number of placed sensors should be minimized, while guaranteeing accurate tracking of hot spots and full thermal characterization. In this paper, we propose a rigid sensor allocation and placement technique for determining the minimal number of thermal sensors and the optimal locations while satisfying an expected accuracy of hot spot temperature error based on dual clustering. We analyze the false alarm rates of hot spots using the proposed methods in noise-free, with noise and sensor calibration scenarios, respectively. Experimental results confirm that our proposed methods are capable of accurately characterizing the temperatures of microprocessors.展开更多
文摘In present work,a helical double tube heat exchanger is proposed in which an advanced turbulator with blades,semi-conical part,and two holes is inserted in inner section.Two geometrical parameters,including angle of turbulator’s blades(θ) and number of turbulator’s blades(N),are considered.Results indicated that firstly,the best thermal stratification is achieved at θ=180°.Furthermore,at the lowest studied mass flow rate(m = 8 × 10^(-3) kg/s),heat transfer coefficient of turbulator with blade angle of 180° is 130.77%,25%,and 36.36% higher than cases including without turbulator,with turbulator with blade angle of θ =240°,and θ =360°,respectively.Moreover,case with N=12 showed the highest overall performance.At the highest studied mass flow rate(m = 5.842 × 10^(-2) kg/s),heat transfer coefficient for case with N=12 is up to 54.76%,27.45%,and 6.56% higher than cases including without turbulator,with turbulator with N=6,and with turbulator with N=9,respectively.
基金The National Natural Science Foundation of China(No.61204083)the Natural Science Foundation of Jiangsu Province(No.BK2011059)the Program for New Century Excellent Talents in University(No.NCET-10-0331)
文摘A novel lateral insulated gate bipolar transistor on a silicon-on-insulator substrate SOI-LIGBT with a special low-doped P-well structure is proposed.The P-well structure is added to attach the P-body under the channel so as to reduce the linear anode current degradation without additional process.The influence of the length and depth of the P-well on the hot-carrier HC reliability of the SOI-LIGBT is studied.With the increase in the length of the P-well the perpendicular electric field peak and the impact ionization peak diminish resulting in the reduction of the hot-carrier degradation. In addition the impact ionization will be weakened with the increase in the depth of the P-well which also makes the hot-carrier degradation decrease.Considering the effect of the low-doped P-well and the process windows the length and depth of the P-well are both chosen as 2 μm.
文摘Using a friction stir additive manufacturing(FSAM)process,the fabrication of a two-layer aluminum−copper pipe was studied experimentally and numerically.For this purpose,by presenting a 3D thermo-mechanical model in ABAQUS software,the temperature and strain distributions during the process were studied.The simulation results show that,although the rotational-to-traverse speed ratio with a good approximation can predict the heat input during welding,it is not a precise measure to predict the occurrence of defects in the weld cross-section.There is a good agreement between the predicted and experimental thermal results,and the maximum relative error is 4.1%in estimating the maximum temperature during welding.Due to heat and severe plastic deformation in the stir zone,the aluminum−copper intermetallic compounds(CuAl_(2) and Cu_(9)Al_(4))are formed.The maximum hardness in the stir zone is 301.4 HV_(0.1) in sample welded with an overlap of−0.5 mm.The ultimate tensile strength and elongation of the two-layer pipe fabricated by friction stir additive manufacturing are(319.52±2.31)MPa and 19.47%,respectively.
基金Project(531107040300)supported by the Fundamental Research Funds for the Central Universities in ChinaProject(51176045)supported by the National Natural Science Foundation of China
文摘In order to explain the oscillation heat transfer dynamics of closed loop oscillation heat pipe (CLOHP) with two liquid slugs,analysis on the forces and heat transfer process of the partial gas-liquid phase system involving multiple parameters was carried out,and a new type oscillation heat transfer dynamic model of the CLOHP was set up based on conservation laws of mass,momentum and energy.Application results indicate that its oscillation heat transfer dynamics features depend largely on the filling rate,pipe diameter and difference in temperature.Besides,oscillation intensity and transfer performance can be improved to a large extent by increasing the temperature difference properly and enlarging the pipe diameter within a certain range under a certain filling rate.
基金Project supported by the National Natural Science Foundation of China
文摘A boundary element method for simulating thermocapillary convection in a two-layer immiscible fluid system with flat and free interface has been developed.The divergence theorem is applied to the non-linear convective volume integral of the boundary element formulation with the pressure penalty function.Consequently,velocity gradients are eliminated and the complete formulation is written in terms of velocity.This avoids the difficulty of convective discretizations and provides considerable reductions in storage and computational requirements while improving accuracy.In this paper,we give the influence of different parameters(Marangoni number, Reynolds number)on thermocapillary convection in cavity with two-layer immiscible fluids.As shown by the numerical results,when the physical parameters between liquid encapsulant and melt are chosen appropriately, the detrimental flow in the bottom melt layer can be greatly suppressed.The influence of the free interface on thermocapillary convection is also shown.
基金the National Natural Science Foundation of China(No.61501377)
文摘Using embedded thermal sensors, dynamic thermal management(DTM) techniques measure runtime thermal behavior of high-performance microprocessors so as to prevent thermal runaway situations. The number of placed sensors should be minimized, while guaranteeing accurate tracking of hot spots and full thermal characterization. In this paper, we propose a rigid sensor allocation and placement technique for determining the minimal number of thermal sensors and the optimal locations while satisfying an expected accuracy of hot spot temperature error based on dual clustering. We analyze the false alarm rates of hot spots using the proposed methods in noise-free, with noise and sensor calibration scenarios, respectively. Experimental results confirm that our proposed methods are capable of accurately characterizing the temperatures of microprocessors.