为了理解甲醇/柴油双燃料机的自燃特性并为燃烧计算所需骨架机理提供理论依据,以正庚烷作为柴油替代物,应用快速压缩机对宽广实验条件下甲醇/正庚烷混合燃料的自燃特性进行了研究。实验条件覆盖了甲醇/柴油双燃料机的典型工况。实验研...为了理解甲醇/柴油双燃料机的自燃特性并为燃烧计算所需骨架机理提供理论依据,以正庚烷作为柴油替代物,应用快速压缩机对宽广实验条件下甲醇/正庚烷混合燃料的自燃特性进行了研究。实验条件覆盖了甲醇/柴油双燃料机的典型工况。实验研究结果显示,随着压力升高、甲醇比例减少或当量比增大,混合燃料滞燃期变短。根据实验数据验证了爱尔兰国立大学(National University of Ireland,NUI)的正庚烷详细机理对甲醇/正庚烷的适用性,并利用该机理在CHEMKIN PRO软件中进行了化学动力学分析。结果表明,甲醇与正庚烷竞争羟基(hydroxyl,OH)从而抑制系统氧化过程。敏感性分析结果显示,超氧化氢(HO_(2))反应生成过氧化氢(H_(2)O_(2))是燃烧过程中最敏感的反应,抑制系统氧化过程的进行。本研究可为获得适用于甲醇/柴油双燃料机燃烧计算的骨架机理提供理论依据。展开更多
基于CONVERGE软件建立了高压直喷双燃料船用发动机三维仿真模型,研究了空气加湿技术和废气再循环(exhaust gas recirculation,EGR)对发动机燃烧过程及排放的影响,并通过耦合进气加湿、EGR和天然气喷射策略等技术,最终得到满足TierⅢ排...基于CONVERGE软件建立了高压直喷双燃料船用发动机三维仿真模型,研究了空气加湿技术和废气再循环(exhaust gas recirculation,EGR)对发动机燃烧过程及排放的影响,并通过耦合进气加湿、EGR和天然气喷射策略等技术,最终得到满足TierⅢ排放法规的可行性技术路线。结果表明,进气加湿降低NO x排放潜力较大(约55%),且对燃料经济性恶化程度较小(约1.6%);单独采用进气加湿技术难以满足TierⅢ排放标准,60%进气加湿程度结合较低程度EGR率(20%)可进一步提高降低NO x排放的潜力(78%);为降低进气加湿和EGR带来的功率损失,在20%EGR率耦合60%进气加湿氛围下,提前2°曲轴转角喷射天然气可使天然气消耗率可降低约1 g/(kW·h),同时NO x排放满足TierⅢ排放法规要求。展开更多
针对LPG双燃料低速机驱动的超大型液化石油气体运输船(very large gas carrier,VLGC)进行轴带发电机配置方案设计,包括轴发型式及安装位置的选择、容量的确定,以及对主机功率和布置等方面影响的考量。基于燃油和LPG两种模式对VLGC配置...针对LPG双燃料低速机驱动的超大型液化石油气体运输船(very large gas carrier,VLGC)进行轴带发电机配置方案设计,包括轴发型式及安装位置的选择、容量的确定,以及对主机功率和布置等方面影响的考量。基于燃油和LPG两种模式对VLGC配置轴带发电机的经济性进行分析。分析表明:对于使用LPG、乙烷、甲醇等新型双燃料主机推进的船舶,如VLGC,非常适合配置轴带发电机。展开更多
Achieving simultaneous reduction of NOx,CO and unburned hydrocarbon(UHC) emissions without compromising engine performance at part loads is the current focus of dual fuel engine research.The present work focuses on an...Achieving simultaneous reduction of NOx,CO and unburned hydrocarbon(UHC) emissions without compromising engine performance at part loads is the current focus of dual fuel engine research.The present work focuses on an experimental investigation conducted on a dual fuel(diesel-natural gas) engine to examine the simultaneous effect of inlet air pre-heating and exhaust gas recirculation(EGR) ratio on performance and emission characteristics at part loads.The use of EGR at high levels seems to be unable to improve the engine performance at part loads.However,it is shown that EGR combined with pre-heating of inlet air can slightly increase thermal efficiency,resulting in reduced levels of both unburned hydrocarbon and NOx emissions.CO and UHC emissions are reduced by 24% and 31%,respectively,The NOx emissions decrease by 21% because of the lower combustion temperature due to the much inert gas brought by EGR and decreased oxygen concentration in the cylinder.展开更多
Great efforts have been made to resolve the serious environmental pollution and inevitable declining of energy resources. A review of Chinese fuel reserves and engine technology showed that compressed natural gas (CN...Great efforts have been made to resolve the serious environmental pollution and inevitable declining of energy resources. A review of Chinese fuel reserves and engine technology showed that compressed natural gas (CNG)/diesel dual fuel engine (DFE) was one of the best solutions for the above problems at present. In order to study and improve the emission performance of CNG/diesel DFE, an emission model for DFE based on radial basis function (RBF) neural network was developed which was a black-box input-output training data model not require priori knowledge. The RBF centers and the connected weights could be selected automatically according to the distribution of the training data in input-output space and the given approximating error. Studies showed that the predicted results accorded well with the experimental data over a large range of operating conditions from low load to high load. The developed emissions model based on the RBF neural network could be used to successfully predict and optimize the emissions performance of DFE. And the effect of the DFE main performance parameters, such as rotation speed, load, pilot quantity and injection timing, were also predicted by means of this model. In resumé, an emission prediction model for CNG/diesel DFE based on RBF neural network was built for analyzing the effect of the main performance parameters on the CO, NOx emissions of DFE. The predicted results agreed quite well with the traditional emissions model, which indicated that the model had certain application value, although it still has some limitations, because of its high dependence on the quantity of the experimental sample data.展开更多
In order to predict and improve the performance of natural gas/diesel dual fuel engine (DFE), a combustion rate model based on forward neural network was built to study the combustion process of the DFE. The effect ...In order to predict and improve the performance of natural gas/diesel dual fuel engine (DFE), a combustion rate model based on forward neural network was built to study the combustion process of the DFE. The effect of the operatin g parameters on combustion rate was also studied by means of this model. The stu dy showed that the predicted results were good agreement with the experimental d a ta. It was proved that the developed combustion rate model could be used to succ essfully predict and optimize the combustion process of dual fuel engine.展开更多
文摘为了理解甲醇/柴油双燃料机的自燃特性并为燃烧计算所需骨架机理提供理论依据,以正庚烷作为柴油替代物,应用快速压缩机对宽广实验条件下甲醇/正庚烷混合燃料的自燃特性进行了研究。实验条件覆盖了甲醇/柴油双燃料机的典型工况。实验研究结果显示,随着压力升高、甲醇比例减少或当量比增大,混合燃料滞燃期变短。根据实验数据验证了爱尔兰国立大学(National University of Ireland,NUI)的正庚烷详细机理对甲醇/正庚烷的适用性,并利用该机理在CHEMKIN PRO软件中进行了化学动力学分析。结果表明,甲醇与正庚烷竞争羟基(hydroxyl,OH)从而抑制系统氧化过程。敏感性分析结果显示,超氧化氢(HO_(2))反应生成过氧化氢(H_(2)O_(2))是燃烧过程中最敏感的反应,抑制系统氧化过程的进行。本研究可为获得适用于甲醇/柴油双燃料机燃烧计算的骨架机理提供理论依据。
文摘针对LPG双燃料低速机驱动的超大型液化石油气体运输船(very large gas carrier,VLGC)进行轴带发电机配置方案设计,包括轴发型式及安装位置的选择、容量的确定,以及对主机功率和布置等方面影响的考量。基于燃油和LPG两种模式对VLGC配置轴带发电机的经济性进行分析。分析表明:对于使用LPG、乙烷、甲醇等新型双燃料主机推进的船舶,如VLGC,非常适合配置轴带发电机。
文摘Achieving simultaneous reduction of NOx,CO and unburned hydrocarbon(UHC) emissions without compromising engine performance at part loads is the current focus of dual fuel engine research.The present work focuses on an experimental investigation conducted on a dual fuel(diesel-natural gas) engine to examine the simultaneous effect of inlet air pre-heating and exhaust gas recirculation(EGR) ratio on performance and emission characteristics at part loads.The use of EGR at high levels seems to be unable to improve the engine performance at part loads.However,it is shown that EGR combined with pre-heating of inlet air can slightly increase thermal efficiency,resulting in reduced levels of both unburned hydrocarbon and NOx emissions.CO and UHC emissions are reduced by 24% and 31%,respectively,The NOx emissions decrease by 21% because of the lower combustion temperature due to the much inert gas brought by EGR and decreased oxygen concentration in the cylinder.
文摘Great efforts have been made to resolve the serious environmental pollution and inevitable declining of energy resources. A review of Chinese fuel reserves and engine technology showed that compressed natural gas (CNG)/diesel dual fuel engine (DFE) was one of the best solutions for the above problems at present. In order to study and improve the emission performance of CNG/diesel DFE, an emission model for DFE based on radial basis function (RBF) neural network was developed which was a black-box input-output training data model not require priori knowledge. The RBF centers and the connected weights could be selected automatically according to the distribution of the training data in input-output space and the given approximating error. Studies showed that the predicted results accorded well with the experimental data over a large range of operating conditions from low load to high load. The developed emissions model based on the RBF neural network could be used to successfully predict and optimize the emissions performance of DFE. And the effect of the DFE main performance parameters, such as rotation speed, load, pilot quantity and injection timing, were also predicted by means of this model. In resumé, an emission prediction model for CNG/diesel DFE based on RBF neural network was built for analyzing the effect of the main performance parameters on the CO, NOx emissions of DFE. The predicted results agreed quite well with the traditional emissions model, which indicated that the model had certain application value, although it still has some limitations, because of its high dependence on the quantity of the experimental sample data.
文摘In order to predict and improve the performance of natural gas/diesel dual fuel engine (DFE), a combustion rate model based on forward neural network was built to study the combustion process of the DFE. The effect of the operatin g parameters on combustion rate was also studied by means of this model. The stu dy showed that the predicted results were good agreement with the experimental d a ta. It was proved that the developed combustion rate model could be used to succ essfully predict and optimize the combustion process of dual fuel engine.