期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于双特征和松弛边界的随机森林进行异常点检测 被引量:8
1
作者 胡淼 王开军 《计算机应用》 CSCD 北大核心 2019年第4期956-962,共7页
针对现有基于随机森林的异常检测算法性能不高的问题,提出一种结合双特征和松弛边界的随机森林算法用于异常点检测。首先,在只使用正常类数据构建随机森林的分类决策树过程中,在二叉决策树的每个节点里记录两个特征的取值范围(每个特征... 针对现有基于随机森林的异常检测算法性能不高的问题,提出一种结合双特征和松弛边界的随机森林算法用于异常点检测。首先,在只使用正常类数据构建随机森林的分类决策树过程中,在二叉决策树的每个节点里记录两个特征的取值范围(每个特征对应一个值域),以此双特征值域作为异常点判断的依据。然后,在进行异常检测时,当某样本不满足决策树节点中的双特征值域时,该样本被标记为候选异常类;否则,该样本进入决策树的下层树节点继续作特征值域的比较,若无下层节点则被标记为候选正常类。最后,由随机森林算法中的判别机制决定该样本的类别。在5个UCI数据集上进行的异常点检测实验结果表明,所提方法比现有的异常检测随机森林算法性能更好,其综合性能与孤立森林(iForest)和一类支持向量机(OCSVM)方法相当或更好,且稳定于较高水平。 展开更多
关键词 异常点检测 随机森林 双特征过滤 松弛边界
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部