Integration of fast electrochemical double-layer capacitance and large pseudocapacitance is a practical way to improve the overall capability of supercapacitor,yet remains challenging.Herein,an effective cyanogel synt...Integration of fast electrochemical double-layer capacitance and large pseudocapacitance is a practical way to improve the overall capability of supercapacitor,yet remains challenging.Herein,an effective cyanogel synthetic strategy was demonstrated to prepare ultrathin Ni(OH)2 nanosheets coupling with conductive reduced graphene oxide(rGO)(rGO-Ni(OH)2)at ambient condition.Ultrathin Ni(OH)2 nanosheet with 3–4 layers of edge-sharing octahedral MO6 maximally exposes the active surface of Faradic reaction and promotes the ion diffusion,while the conductive rGO sheet boosts the electron transport during the reaction.Even at 30 A g−1,the optimal sample can deliver a specific capacitance of 1119.52 F g−1,and maintain 82.3%after 2000 cycles,demonstrating much higher electrochemical capability than bare Ni(OH)2 nanosheets.A maximum specific energy of 44.3 W h kg^−1(148.5 W kg^−1)is obtained,when assembled in a two-electrode system rGO-Ni(OH)2//rGO.This study provides an insight into efficient construction of two dimensional hybrid electrodes with high performance for the new-generation energy storage system.展开更多
基金the National Natural Science Foundation of China(21875133)Xijiang R&D Team(Wang X),the Science and Technology Program of Guangzhou(2019050001)Science and Technology Commission of Shanghai Municipality(19ZR1479500)。
文摘Integration of fast electrochemical double-layer capacitance and large pseudocapacitance is a practical way to improve the overall capability of supercapacitor,yet remains challenging.Herein,an effective cyanogel synthetic strategy was demonstrated to prepare ultrathin Ni(OH)2 nanosheets coupling with conductive reduced graphene oxide(rGO)(rGO-Ni(OH)2)at ambient condition.Ultrathin Ni(OH)2 nanosheet with 3–4 layers of edge-sharing octahedral MO6 maximally exposes the active surface of Faradic reaction and promotes the ion diffusion,while the conductive rGO sheet boosts the electron transport during the reaction.Even at 30 A g−1,the optimal sample can deliver a specific capacitance of 1119.52 F g−1,and maintain 82.3%after 2000 cycles,demonstrating much higher electrochemical capability than bare Ni(OH)2 nanosheets.A maximum specific energy of 44.3 W h kg^−1(148.5 W kg^−1)is obtained,when assembled in a two-electrode system rGO-Ni(OH)2//rGO.This study provides an insight into efficient construction of two dimensional hybrid electrodes with high performance for the new-generation energy storage system.