Nanoporous copper with nano-scale pore size was synthesized by dealloying Mn-Cu precursor alloy using a free corrosion method. The effects of heat treatment of Mn-Cu precursors on alloy phase, morphology and compositi...Nanoporous copper with nano-scale pore size was synthesized by dealloying Mn-Cu precursor alloy using a free corrosion method. The effects of heat treatment of Mn-Cu precursors on alloy phase, morphology and composition of the resultant nanoporous copper were investigated. It is revealed that the compositions distribute homogeneously in the bulk Mn-Cu precursors, which consequently results in a more fully dealloying for forming nanoporous copper. The alloy phase changes from Cuo.a9Mno.51 and Cuo.21Mno.79 of non-thermally treated precursor to Cuo.33Mn0.67 of heat treated alloy. The residual Mn content in nanoporous copper is decreased from 12.97% to 2.04% (molar fraction) made from the precursor without and with 95 h heat treatment. The typical pore shape of nanoporous copper prepared by dealloying the precursor without the heat treatment is divided into two different zones: the uniform bi-continuous structure zone and the blurry or no pore structure zone. Nanoporous copper is of a uniform sponge-like morphology made from the heat-treated precursor, and the average ligament diameter is 40 nm, far smaller than that from the non-thermally treated precursor, in which the average ligament diameter is estimated to be about 70 nm.展开更多
Experimental results of the dual-resonant and non-resonant responses are presented for vortex-induced vibrations(VIV)of a long slender cylinder.The cylinder has a diameter of 10mm and a length of 3.31 m,giving an aspe...Experimental results of the dual-resonant and non-resonant responses are presented for vortex-induced vibrations(VIV)of a long slender cylinder.The cylinder has a diameter of 10mm and a length of 3.31 m,giving an aspect ratio of 331.The cylinder was towed by a carriage with the velocity up to 1.5 m/s,with the Reynolds number varying from 2500 to 38000.Three different weights were used to provide the initial tension.Dual resonance means that resonance occurs simultaneously in both the cross-flow(CF)and in-line(IL)directions.The experiments were conducted in two stages.At the first stage,dual-resonant dynamic features of the cylinder subjected to vortex-induced excitation were investigated.The features of CF and IL vibration amplitude,motion orbits,phase angle differences,dominant frequencies and mode order numbers are presented.At the second stage of the experiments,particular emphasis was placed on non-resonant dynamic features.The variation of multi-mode modal displacement amplitudes was investigated in detail.展开更多
基金Project(10804101) supported by the National Natural Science Foundation of ChinaProject(9140C6805021008) supported by the State Key Development Program for Basic Research of ChinaProject(2007B08007) supported by the Science and Technology Development Foundation of Chinese Academy of Engineering Physics
文摘Nanoporous copper with nano-scale pore size was synthesized by dealloying Mn-Cu precursor alloy using a free corrosion method. The effects of heat treatment of Mn-Cu precursors on alloy phase, morphology and composition of the resultant nanoporous copper were investigated. It is revealed that the compositions distribute homogeneously in the bulk Mn-Cu precursors, which consequently results in a more fully dealloying for forming nanoporous copper. The alloy phase changes from Cuo.a9Mno.51 and Cuo.21Mno.79 of non-thermally treated precursor to Cuo.33Mn0.67 of heat treated alloy. The residual Mn content in nanoporous copper is decreased from 12.97% to 2.04% (molar fraction) made from the precursor without and with 95 h heat treatment. The typical pore shape of nanoporous copper prepared by dealloying the precursor without the heat treatment is divided into two different zones: the uniform bi-continuous structure zone and the blurry or no pore structure zone. Nanoporous copper is of a uniform sponge-like morphology made from the heat-treated precursor, and the average ligament diameter is 40 nm, far smaller than that from the non-thermally treated precursor, in which the average ligament diameter is estimated to be about 70 nm.
基金supported by the Knowledge Innovation Program of Chinese Academy of Sciences(Grant No.KJCX2-YW-L07)Construction Technology Program of Ministry of Transport(Grant No.2013 318 740 050)
文摘Experimental results of the dual-resonant and non-resonant responses are presented for vortex-induced vibrations(VIV)of a long slender cylinder.The cylinder has a diameter of 10mm and a length of 3.31 m,giving an aspect ratio of 331.The cylinder was towed by a carriage with the velocity up to 1.5 m/s,with the Reynolds number varying from 2500 to 38000.Three different weights were used to provide the initial tension.Dual resonance means that resonance occurs simultaneously in both the cross-flow(CF)and in-line(IL)directions.The experiments were conducted in two stages.At the first stage,dual-resonant dynamic features of the cylinder subjected to vortex-induced excitation were investigated.The features of CF and IL vibration amplitude,motion orbits,phase angle differences,dominant frequencies and mode order numbers are presented.At the second stage of the experiments,particular emphasis was placed on non-resonant dynamic features.The variation of multi-mode modal displacement amplitudes was investigated in detail.