为改进亮度保持双直方图均衡算法的不足,提出基于最大熵模型的动态范围优化方法,扩展了双直方图均衡算法的应用范围,使之不仅适用于正常亮度图像,对低照度及高亮图像也能取得较好的效果.算法首先选用大津法确定直方图数据分割点;然后对...为改进亮度保持双直方图均衡算法的不足,提出基于最大熵模型的动态范围优化方法,扩展了双直方图均衡算法的应用范围,使之不仅适用于正常亮度图像,对低照度及高亮图像也能取得较好的效果.算法首先选用大津法确定直方图数据分割点;然后对初始直方图进行预处理;根据所提出的最大熵模型确定最佳的动态范围分割点;最后进行双直方图均衡得到增强图像.本文选取多个图像数据库进行测试,并与BBHE(Brightness preserving Bi-Histogram Equalization)、BPCLBHE(Brightness Preserving and Contrast Limited Bi-Histogram Equalization)、ESIHE(Exposure based Sub Image Histogram Equalization)和DRSHE(Dynamic Range Separate Histogram Equalization)进行比较,同时将信息熵、对比度和NIQE(Natural Image Quality Evaluator)作为客观评价指标.实验结果证明,本文算法对各类图像均具有较好的主观视觉效果和客观评价指标,在保留细节的同时兼顾了对比度的增强.展开更多
为了抑制全局直方图均衡产生的灰度饱和和局部细节丢失的情况,提出了一种双直方图均衡算法。首先对图像的背景和前景进行分割,提出基于直方图的局部最小值和修正的K-Means聚类算法来确定图像的理想分割阈值,然后再对分割的子图分别作全...为了抑制全局直方图均衡产生的灰度饱和和局部细节丢失的情况,提出了一种双直方图均衡算法。首先对图像的背景和前景进行分割,提出基于直方图的局部最小值和修正的K-Means聚类算法来确定图像的理想分割阈值,然后再对分割的子图分别作全局直方图均衡(Global Histogram Equalization,GHE)。对该算法进行了实验验证,结果表明,相较于GHE算法,经该算法增强后的图像峰值信噪比(Peak Signal to Noise Ratio,PSNR)提高约16.425%,结构相似度(Structural Similarity Index,SSIM)提高约14.85%。同时通过主观分析,基于直方图局部最小值和修正的K-Means聚类算法的图像分割进行双直方图均衡可以有效抑制GHE算法产生的灰度饱和和细节丢失现象。展开更多
文摘为改进亮度保持双直方图均衡算法的不足,提出基于最大熵模型的动态范围优化方法,扩展了双直方图均衡算法的应用范围,使之不仅适用于正常亮度图像,对低照度及高亮图像也能取得较好的效果.算法首先选用大津法确定直方图数据分割点;然后对初始直方图进行预处理;根据所提出的最大熵模型确定最佳的动态范围分割点;最后进行双直方图均衡得到增强图像.本文选取多个图像数据库进行测试,并与BBHE(Brightness preserving Bi-Histogram Equalization)、BPCLBHE(Brightness Preserving and Contrast Limited Bi-Histogram Equalization)、ESIHE(Exposure based Sub Image Histogram Equalization)和DRSHE(Dynamic Range Separate Histogram Equalization)进行比较,同时将信息熵、对比度和NIQE(Natural Image Quality Evaluator)作为客观评价指标.实验结果证明,本文算法对各类图像均具有较好的主观视觉效果和客观评价指标,在保留细节的同时兼顾了对比度的增强.
文摘为了抑制全局直方图均衡产生的灰度饱和和局部细节丢失的情况,提出了一种双直方图均衡算法。首先对图像的背景和前景进行分割,提出基于直方图的局部最小值和修正的K-Means聚类算法来确定图像的理想分割阈值,然后再对分割的子图分别作全局直方图均衡(Global Histogram Equalization,GHE)。对该算法进行了实验验证,结果表明,相较于GHE算法,经该算法增强后的图像峰值信噪比(Peak Signal to Noise Ratio,PSNR)提高约16.425%,结构相似度(Structural Similarity Index,SSIM)提高约14.85%。同时通过主观分析,基于直方图局部最小值和修正的K-Means聚类算法的图像分割进行双直方图均衡可以有效抑制GHE算法产生的灰度饱和和细节丢失现象。