Hardness tests and transmission electron microscopy were used to investigate the strategy of tailoring the phase fraction of precipitates in an Al-Zn-Mg-Cu alloy strengthened by T’ and η’ phases. Different phase fr...Hardness tests and transmission electron microscopy were used to investigate the strategy of tailoring the phase fraction of precipitates in an Al-Zn-Mg-Cu alloy strengthened by T’ and η’ phases. Different phase fractions of T’ and η’ phases are presented in samples subjected to either single or two stages of ageing treatments at 120 and 150 ℃.For both types of ageing, the precipitation of η’ phase is found to be promoted by ageing at lower temperature and its phase fraction increases with prolonging ageing time at 120 ℃;whereas the phase fractions of T’ and η’ phases almost remain constant during ageing at 150 ℃. Besides, the strain fields produced by T’ and η’ phases were analyzed by using the geometric phase analysis technique, and on a macroscale the contributions of T’ and η’ phases to precipitation strengthening have been quantitatively predicted by combining the size, phase fraction and number density of precipitates.展开更多
An optimization model for scheduling of quay cranes (QCs) and yard trailers was proposed to improve the overall efficiency of container terminals. To implement this model, a two-phase tabu search algorithm was designe...An optimization model for scheduling of quay cranes (QCs) and yard trailers was proposed to improve the overall efficiency of container terminals. To implement this model, a two-phase tabu search algorithm was designed. In the QCs scheduling phase of the algorithm, a search was performed to determine a good QC unloading operation order. For each QC unloading operation order generated during the QC's scheduling phase, another search was run to obtain a good yard trailer routing for the given QC's unloading order. Using this information, the time required for the operation was estimated, then the time of return to availability of the units was fed back to the QC scheduler. Numerical tests show that the two-phase Tabu Search algorithm searches the solution space efficiently, decreases the empty distance yard trailers must travel, decreases the number of trailers needed, and thereby reduces time and costs and improves the integration and reliability of container terminal operation systems.展开更多
The partition coefficients of baicalin were measured in ethylene oxide and propylene oxide (EOPO)/salt aqueous two-phase systems at 298.15K. It was found that most of baicalin partitioned into EOPO-rich phase. The par...The partition coefficients of baicalin were measured in ethylene oxide and propylene oxide (EOPO)/salt aqueous two-phase systems at 298.15K. It was found that most of baicalin partitioned into EOPO-rich phase. The partition coefficients of baicalin varied from 10 to 120. The effect of various factors, including tie-line length, salt composition, molecular weight of EOPO, and solution pH, on the partition behavior was investigated in EOPO/salt systems. Furthermore the partition coefficients of baicalin were correlated using the modified Diamond-Hsu model. Good agreement with experimental data is obtained. The average relative deviations are less than 5.0%.展开更多
The phase composition, phase transition and phase structure transformation of the wire-cut section of functionally graded WC-Co cemented carbide with dual phase structure were investigated by XRD phase analysis. It is...The phase composition, phase transition and phase structure transformation of the wire-cut section of functionally graded WC-Co cemented carbide with dual phase structure were investigated by XRD phase analysis. It is shown that the composition of η phase in the core zone is Co_3W_3C (M_6 C type). The structure of cobalt based solid solution binder phase is fcc type. At the cooling stage of the sintering process, the phase transition of η phase, i.e. M_6C→M_12C and the martensitic phase transition of the cobalt based solid solution binder phase, i.e. fcc→hcp are suppressed, which facilitates the strengthening of the alloy. Because the instantaneous temperature of the discharge channel is as high as 10 000 ℃ during the wire cutting process, the processed surface is oxidized. Nevertheless, the oxide layer thickness is in micro grade. In the oxide film, η phase is decomposed into W_2C and CoO, and cobalt based solid solution binder is selectively oxidized, while WC remains stable due to the existence of carbon containing liquid organic cutting medium.展开更多
Supported PtCu alloys have been broadly applied in heterogeneous catalysis and electrocatalysis owing to their excellent catalytic performance and high CO tolerance. It is important to analyze the outermost surface c...Supported PtCu alloys have been broadly applied in heterogeneous catalysis and electrocatalysis owing to their excellent catalytic performance and high CO tolerance. It is important to analyze the outermost surface composition of the supported alloy nanoparticles to understand the nature of the catalytically active sites. In this paper, homogeneous face-centered cubic PtCu nanoparticles with a narrow particle size distribution were successfully fabricated and dispersed on a high-surface-area Ti〇2 powder support. The samples were oxidized and reduced in situ and then introduced into the ultrahigh vacuum chamber to measure the topmost surface composition by high-sensitivity low-energy ion scattering spectroscopy, and to determine the oxidation states of the elements by X-ray photoelectron spectroscopy. The surface composition and morphology, elemental distribu-tion, and oxidation states of the components were found to be significantly affected by the support and treatment conditions. The PtCu is de-alloyed upon oxidation with CuO wetting on the TiO2 sur-face and re-alloyed upon reduction. Phase diagrams of the surface composition and the bulk com-position were plotted and compared for the supported and unsupported materials.展开更多
Over the last few years, machine learning is gradually becoming an essential approach for the investigation of heterogeneous catalysis. As one of the important catalysts, binary alloys have attracted extensive attenti...Over the last few years, machine learning is gradually becoming an essential approach for the investigation of heterogeneous catalysis. As one of the important catalysts, binary alloys have attracted extensive attention for the screening of bifunctional catalysts. Here we present a holistic framework for machine learning approach to rapidly predict adsorption energies on the surfaces of metals and binary alloys. We evaluate different machine-learning methods to understand their applicability to the problem and combine a tree-ensemble method with a compressed-sensing method to construct decision trees for about 60000 adsorption data.Compared to linear scaling relations, our approach enables to make more accurate predictions lowering predictive root-mean-square error by a factor of two and more general to predict adsorption energies of various adsorbates on thousands of binary alloys surfaces, thus paving the way for the discovery of novel bimetallic catalysts.展开更多
基金supports from the National Natural Science Foundation of China(No.51871033).
文摘Hardness tests and transmission electron microscopy were used to investigate the strategy of tailoring the phase fraction of precipitates in an Al-Zn-Mg-Cu alloy strengthened by T’ and η’ phases. Different phase fractions of T’ and η’ phases are presented in samples subjected to either single or two stages of ageing treatments at 120 and 150 ℃.For both types of ageing, the precipitation of η’ phase is found to be promoted by ageing at lower temperature and its phase fraction increases with prolonging ageing time at 120 ℃;whereas the phase fractions of T’ and η’ phases almost remain constant during ageing at 150 ℃. Besides, the strain fields produced by T’ and η’ phases were analyzed by using the geometric phase analysis technique, and on a macroscale the contributions of T’ and η’ phases to precipitation strengthening have been quantitatively predicted by combining the size, phase fraction and number density of precipitates.
文摘An optimization model for scheduling of quay cranes (QCs) and yard trailers was proposed to improve the overall efficiency of container terminals. To implement this model, a two-phase tabu search algorithm was designed. In the QCs scheduling phase of the algorithm, a search was performed to determine a good QC unloading operation order. For each QC unloading operation order generated during the QC's scheduling phase, another search was run to obtain a good yard trailer routing for the given QC's unloading order. Using this information, the time required for the operation was estimated, then the time of return to availability of the units was fed back to the QC scheduler. Numerical tests show that the two-phase Tabu Search algorithm searches the solution space efficiently, decreases the empty distance yard trailers must travel, decreases the number of trailers needed, and thereby reduces time and costs and improves the integration and reliability of container terminal operation systems.
基金Supported by the National Natural Science Foundation of China (No. 29736180).
文摘The partition coefficients of baicalin were measured in ethylene oxide and propylene oxide (EOPO)/salt aqueous two-phase systems at 298.15K. It was found that most of baicalin partitioned into EOPO-rich phase. The partition coefficients of baicalin varied from 10 to 120. The effect of various factors, including tie-line length, salt composition, molecular weight of EOPO, and solution pH, on the partition behavior was investigated in EOPO/salt systems. Furthermore the partition coefficients of baicalin were correlated using the modified Diamond-Hsu model. Good agreement with experimental data is obtained. The average relative deviations are less than 5.0%.
基金Projects(50323008, 50574104) supported by the National Natural Science Foundation of ChinaProject (04JJ3084) supported by the Natural Science Foundation of Hunan Province, China
文摘The phase composition, phase transition and phase structure transformation of the wire-cut section of functionally graded WC-Co cemented carbide with dual phase structure were investigated by XRD phase analysis. It is shown that the composition of η phase in the core zone is Co_3W_3C (M_6 C type). The structure of cobalt based solid solution binder phase is fcc type. At the cooling stage of the sintering process, the phase transition of η phase, i.e. M_6C→M_12C and the martensitic phase transition of the cobalt based solid solution binder phase, i.e. fcc→hcp are suppressed, which facilitates the strengthening of the alloy. Because the instantaneous temperature of the discharge channel is as high as 10 000 ℃ during the wire cutting process, the processed surface is oxidized. Nevertheless, the oxide layer thickness is in micro grade. In the oxide film, η phase is decomposed into W_2C and CoO, and cobalt based solid solution binder is selectively oxidized, while WC remains stable due to the existence of carbon containing liquid organic cutting medium.
基金supported by the National Basic Research Program of China(973 Program,2013CB933102)the National Natural Science Foundation of China(21273178,21573180,91545204)Xiamen-Zhuoyue Biomass Energy Co.Ltd~~
文摘Supported PtCu alloys have been broadly applied in heterogeneous catalysis and electrocatalysis owing to their excellent catalytic performance and high CO tolerance. It is important to analyze the outermost surface composition of the supported alloy nanoparticles to understand the nature of the catalytically active sites. In this paper, homogeneous face-centered cubic PtCu nanoparticles with a narrow particle size distribution were successfully fabricated and dispersed on a high-surface-area Ti〇2 powder support. The samples were oxidized and reduced in situ and then introduced into the ultrahigh vacuum chamber to measure the topmost surface composition by high-sensitivity low-energy ion scattering spectroscopy, and to determine the oxidation states of the elements by X-ray photoelectron spectroscopy. The surface composition and morphology, elemental distribu-tion, and oxidation states of the components were found to be significantly affected by the support and treatment conditions. The PtCu is de-alloyed upon oxidation with CuO wetting on the TiO2 sur-face and re-alloyed upon reduction. Phase diagrams of the surface composition and the bulk com-position were plotted and compared for the supported and unsupported materials.
基金supported by the National Key R&D Program of China(No.2017YFB0602205,No.2018YFA0208603,No.2018YFB0704400)the National Natural Science Foundation of China(No.91645202,No.91945302,No.21903077)+1 种基金the Chinese Academy of Sciences(No.QYZDJ-SSW-SLH054)the Fundamental Research Funds for the Central Universities,the China Postdoctoral Science Foundation,the Program of Shanghai Youth Oriental Scholars,and the DNL Cooperation Fund CAS(No.DNL201920).
文摘Over the last few years, machine learning is gradually becoming an essential approach for the investigation of heterogeneous catalysis. As one of the important catalysts, binary alloys have attracted extensive attention for the screening of bifunctional catalysts. Here we present a holistic framework for machine learning approach to rapidly predict adsorption energies on the surfaces of metals and binary alloys. We evaluate different machine-learning methods to understand their applicability to the problem and combine a tree-ensemble method with a compressed-sensing method to construct decision trees for about 60000 adsorption data.Compared to linear scaling relations, our approach enables to make more accurate predictions lowering predictive root-mean-square error by a factor of two and more general to predict adsorption energies of various adsorbates on thousands of binary alloys surfaces, thus paving the way for the discovery of novel bimetallic catalysts.