The flow field of gas and liquid in a φ150mm rotating-stream-tray (RST) scrubber is simulated by using computational fluid dynamic (CFD) method. The sismulation is based on the two-equation RNG κ-ε turbulence model...The flow field of gas and liquid in a φ150mm rotating-stream-tray (RST) scrubber is simulated by using computational fluid dynamic (CFD) method. The sismulation is based on the two-equation RNG κ-ε turbulence model, Eulerian multiphase model, and a real-shape 3D model with a huge number of meshes. The simulation results include detailed information about velocity, pressure, volume fraction and so on. Some features of the flow field are obtained: liquid is atomized in a thin annular zone; a high velocity air zone prevents water drops at the bottom from flying towards the wall; the pressure varies sharply at the end of blades and so on. The results will be helpful for structure optimization and engineering design.展开更多
Negativity has been adopted to investigate the entanglement in a system composed of a two-level atom anda two-mode cavity field.Effects of Kerr-like medium and the number of photon inside the cavity on the entanglemen...Negativity has been adopted to investigate the entanglement in a system composed of a two-level atom anda two-mode cavity field.Effects of Kerr-like medium and the number of photon inside the cavity on the entanglementare studied.Our results show that atomic initial state must be superposed,so that the two cavity field modes can beentangled.Moreover,we also conclude that the number of photon in the two cavity mode should be equal.The interactionbetween modes,namely,the Kerr effect,has a significant negative contribution.Note that the atom frequency and thecavity frequency have an indistinguishable effect,so a corresponding approximation has been made in this article.Theseresults may be useful for quantum information in optics systems.展开更多
In this paper, we investigate the evolution of two non-identical two-level atoms in two-mode cavity fields. We demonstrate the death and rebirth effect of entanglement for two non-identical two-level atoms under some ...In this paper, we investigate the evolution of two non-identical two-level atoms in two-mode cavity fields. We demonstrate the death and rebirth effect of entanglement for two non-identical two-level atoms under some initial conditions. It is also exemplified that entangled states of two nonidentical two-level atoms can be generated by entangled two-mode cavity fields. This research can be considered as a first step to further investigate the problem of manipulating two nonidentical two-level atoms in two-mode cavity fields.展开更多
The geometric phase of the bipartite Heisenberg spin-1/2 system with one spin driven by rotating magnetic field is investigated. It is found that in the one-site drive case, the intersubsystem coupling can be equivale...The geometric phase of the bipartite Heisenberg spin-1/2 system with one spin driven by rotating magnetic field is investigated. It is found that in the one-site drive case, the intersubsystem coupling can be equivalent to a static quasi-magnetic field in the parameter space. This perspective has satisfactorily explained the irregular asymptote effect of geometric phase. We discuss the property of the two-site magnetic drive spin system and discover that a stationary state with no geometric phase shift is generated.展开更多
By making use of the dynamical algebraic approach, we study the two-mode Raman coupled model governed by the Milburn equation and find the exact solution of the Milburn equation without diffusion approximation. The ex...By making use of the dynamical algebraic approach, we study the two-mode Raman coupled model governed by the Milburn equation and find the exact solution of the Milburn equation without diffusion approximation. The exact solution is then used to discuss the influence of intrinsic decoherence on the revivals of atomic inversion, oscillation of the photon number distribution and squeezing of radiation field in the whole ranges of the decoherence parameter .展开更多
Considering two identical two-level atoms interacting with two mode thermal field through a nondegeratetwo-photon process,we study the entanglement dynamics between two atoms when the atomic coherence exists.It showst...Considering two identical two-level atoms interacting with two mode thermal field through a nondegeratetwo-photon process,we study the entanglement dynamics between two atoms when the atomic coherence exists.It showsthat the entanglement is dependent on the initial atomic states,and is greatly enhanced due to atomic coherence ascompared with the case when the atomic coherence is ignored.The results also show that the entanglement can becontrolled by changing the relative phases and the amplitudes of the polarized atoms.展开更多
The influences of hyperon-hyperon interaction on the overall properties of hadronic star are investigated in the framework of relativistic mean field (RMF) theory. For certain hyperon coupling, the weaker hyperon-hy...The influences of hyperon-hyperon interaction on the overall properties of hadronic star are investigated in the framework of relativistic mean field (RMF) theory. For certain hyperon coupling, the weaker hyperon-hyperon interaction can lead to the heavier hadronic star, which accords with the observation of heavy neutron star in X-ray binaries. We find that the threshold densities of the hyperons with larger masses are brought to a lower values with the increase of the hyperon-hyperon interaction. The possibility of the existence of hyperon star is checked with the consideration of hyperon-hyperon interaction.展开更多
A duplex-phase Zr-2.5Nb alloy was treated by pulsed laser, followed by careful microstructural characterization using field emission gun scanning electron microscope and attached electron backscatter diffraction. Bene...A duplex-phase Zr-2.5Nb alloy was treated by pulsed laser, followed by careful microstructural characterization using field emission gun scanning electron microscope and attached electron backscatter diffraction. Beneath the modification zones with common uniform α-plate structures(UPS), a layer of unreported bimodal α-plate structures(BPS) featured by coarse(submicron)plates forming multiple cores surrounded by dense fine(nanoscale) plates was found. Presence of such BPS is attributed to non-equilibrium thermodynamic conditions induced by the pulsed laser treatments. Limited diffusion of Nb due to the short pulse during laser heating allows β phases with distinctly different Nb contents to be presented: Nb-enriched prior β films and Nb-depleted β phases, transforming into the fine and the coarse plates during cooling, respectively. Orientation analyses show that both types of plates in the BPS are aroused essentially from a single β orientation, suggesting epitaxial growth of the Nb-depletedβ phases from the preexisting β films.展开更多
The purpose of this study was to describe the roles of microstructure types and grain boundary characteristics in fatigue crack propagation behavior in ferrite-pearlite steel and ferrite-bainite steel.The ferrite-bain...The purpose of this study was to describe the roles of microstructure types and grain boundary characteristics in fatigue crack propagation behavior in ferrite-pearlite steel and ferrite-bainite steel.The ferrite-bainite dual-phase steel was obtained by intermediate heat treatment conducted on ferrite-pearlite low carbon steel.This paper presents the results from investigation using constant stress-controlled fatigue tests with in-situ scanning electron microscopy(SEM),electron backscattering diffraction(EBSD) and fatigue fractography analysis.Microscopic images arrested by in-situ SEM showed that the second hard bainite phase distributed in the soft ferrite matrix had a significant effect on preventing the cracks opening compared with pearlite,and that the cracks in ferrite-bainite steel were "locked" in the second hard bainite phase while the crack propagation path in ferrite-pearlite steel was more tortuous.Moreover,the fatigue fracture surface analysis and the coincidence site lattice(CSL) obtained by EBSD indicated that low-CSL grain boundaries in ferrite-bainite steel distributed more uniformly,which has a more significant effect on the resistance of crack propagation.It was revealed that ferrite-bainite dual-phase microstructures could inhibit the fatigue crack propagation more effectively than ferrite-pearlite microstructures.展开更多
Deformation behaviors of bicrystalline and nano-polycrystalline structures of various tilt angles and inclination angles in two dimensions are investigated in detail using a two-mode phase field crystal model.The inte...Deformation behaviors of bicrystalline and nano-polycrystalline structures of various tilt angles and inclination angles in two dimensions are investigated in detail using a two-mode phase field crystal model.The interaction between grain boundary(GB)and dislocation is also examined in bicrystals and nano-polycrystals that both contain asymmetric and symmetric tilt GBs,with energy analysis being carried out to analyze these processes.During deformation simulations,we assume the volume of each simulation cell at every time step is coincident with that of the initial state just before deformation.Our simulation results show that the behaviors of symmetric and asymmetric GBs in bicrystals and nano-polycrystals differ from each other depending on tilt angle and inclination angle.A new dislocation emission mechanism of interest is observed in bicrystals which contain low angle symmetric tilt GBs.Low angle GB has a higher mobility relative to high angle GB in both bicrystalline and nano-polycrystalline structures,as does asymmetric GB to symmetric GB.The generation,motion,pileup and annihilation of dislocations,grain rotation and grain coalescence are observed,which is consistent with the simulation results obtained by molecular dynamics.These simulation results can provide strong guidelines for experimentation.展开更多
基金Supported by the National 863 Project (2001AA642030-1) and Zhejiang Provincial Key Research Project (010007037).
文摘The flow field of gas and liquid in a φ150mm rotating-stream-tray (RST) scrubber is simulated by using computational fluid dynamic (CFD) method. The sismulation is based on the two-equation RNG κ-ε turbulence model, Eulerian multiphase model, and a real-shape 3D model with a huge number of meshes. The simulation results include detailed information about velocity, pressure, volume fraction and so on. Some features of the flow field are obtained: liquid is atomized in a thin annular zone; a high velocity air zone prevents water drops at the bottom from flying towards the wall; the pressure varies sharply at the end of blades and so on. The results will be helpful for structure optimization and engineering design.
基金Supported by National Natural Science Foundation of China under Grant Nos.10604053,2006CB932603,and 90305026Beihang Lantian Project
文摘Negativity has been adopted to investigate the entanglement in a system composed of a two-level atom anda two-mode cavity field.Effects of Kerr-like medium and the number of photon inside the cavity on the entanglementare studied.Our results show that atomic initial state must be superposed,so that the two cavity field modes can beentangled.Moreover,we also conclude that the number of photon in the two cavity mode should be equal.The interactionbetween modes,namely,the Kerr effect,has a significant negative contribution.Note that the atom frequency and thecavity frequency have an indistinguishable effect,so a corresponding approximation has been made in this article.Theseresults may be useful for quantum information in optics systems.
基金supported by the National Natural Science Foundation of China under Grant Nos.60674040 and 60774099partly supported by the Key Laboratory of Systems and Control,Chinese Academy of Sciences
文摘In this paper, we investigate the evolution of two non-identical two-level atoms in two-mode cavity fields. We demonstrate the death and rebirth effect of entanglement for two non-identical two-level atoms under some initial conditions. It is also exemplified that entangled states of two nonidentical two-level atoms can be generated by entangled two-mode cavity fields. This research can be considered as a first step to further investigate the problem of manipulating two nonidentical two-level atoms in two-mode cavity fields.
基金The project supported by National Natural Science Foundation of China under Grant No. 20376054
文摘The geometric phase of the bipartite Heisenberg spin-1/2 system with one spin driven by rotating magnetic field is investigated. It is found that in the one-site drive case, the intersubsystem coupling can be equivalent to a static quasi-magnetic field in the parameter space. This perspective has satisfactorily explained the irregular asymptote effect of geometric phase. We discuss the property of the two-site magnetic drive spin system and discover that a stationary state with no geometric phase shift is generated.
文摘By making use of the dynamical algebraic approach, we study the two-mode Raman coupled model governed by the Milburn equation and find the exact solution of the Milburn equation without diffusion approximation. The exact solution is then used to discuss the influence of intrinsic decoherence on the revivals of atomic inversion, oscillation of the photon number distribution and squeezing of radiation field in the whole ranges of the decoherence parameter .
基金Supported by the Young Scientists Fund of the National Natural Science Foundation of China under Grant No.10905028the Program for Science and Technology Department of Henan Province of China under Grant No.102300410050+1 种基金the Opening Project of Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control (Hunan Normal University),Ministry of Education under Grant No.QSQC1003by the Cultivation Fund of Luoyang Normal College under Grant No.10000854
文摘Considering two identical two-level atoms interacting with two mode thermal field through a nondegeratetwo-photon process,we study the entanglement dynamics between two atoms when the atomic coherence exists.It showsthat the entanglement is dependent on the initial atomic states,and is greatly enhanced due to atomic coherence ascompared with the case when the atomic coherence is ignored.The results also show that the entanglement can becontrolled by changing the relative phases and the amplitudes of the polarized atoms.
文摘The influences of hyperon-hyperon interaction on the overall properties of hadronic star are investigated in the framework of relativistic mean field (RMF) theory. For certain hyperon coupling, the weaker hyperon-hyperon interaction can lead to the heavier hadronic star, which accords with the observation of heavy neutron star in X-ray binaries. We find that the threshold densities of the hyperons with larger masses are brought to a lower values with the increase of the hyperon-hyperon interaction. The possibility of the existence of hyperon star is checked with the consideration of hyperon-hyperon interaction.
基金supported by the National Natural Science Foundation of China(Grant Nos.51401040&51401039)the Scientific and Technological Research Program of Chongqing Municipal Education Commission(Grant No.KJ1500901)+1 种基金the Natural Science Foundation of Hebei Province of China(Grant No.E2015203250)the Young Teachers Program of Yanshan University(Grant No.14LGA005)
文摘A duplex-phase Zr-2.5Nb alloy was treated by pulsed laser, followed by careful microstructural characterization using field emission gun scanning electron microscope and attached electron backscatter diffraction. Beneath the modification zones with common uniform α-plate structures(UPS), a layer of unreported bimodal α-plate structures(BPS) featured by coarse(submicron)plates forming multiple cores surrounded by dense fine(nanoscale) plates was found. Presence of such BPS is attributed to non-equilibrium thermodynamic conditions induced by the pulsed laser treatments. Limited diffusion of Nb due to the short pulse during laser heating allows β phases with distinctly different Nb contents to be presented: Nb-enriched prior β films and Nb-depleted β phases, transforming into the fine and the coarse plates during cooling, respectively. Orientation analyses show that both types of plates in the BPS are aroused essentially from a single β orientation, suggesting epitaxial growth of the Nb-depletedβ phases from the preexisting β films.
文摘The purpose of this study was to describe the roles of microstructure types and grain boundary characteristics in fatigue crack propagation behavior in ferrite-pearlite steel and ferrite-bainite steel.The ferrite-bainite dual-phase steel was obtained by intermediate heat treatment conducted on ferrite-pearlite low carbon steel.This paper presents the results from investigation using constant stress-controlled fatigue tests with in-situ scanning electron microscopy(SEM),electron backscattering diffraction(EBSD) and fatigue fractography analysis.Microscopic images arrested by in-situ SEM showed that the second hard bainite phase distributed in the soft ferrite matrix had a significant effect on preventing the cracks opening compared with pearlite,and that the cracks in ferrite-bainite steel were "locked" in the second hard bainite phase while the crack propagation path in ferrite-pearlite steel was more tortuous.Moreover,the fatigue fracture surface analysis and the coincidence site lattice(CSL) obtained by EBSD indicated that low-CSL grain boundaries in ferrite-bainite steel distributed more uniformly,which has a more significant effect on the resistance of crack propagation.It was revealed that ferrite-bainite dual-phase microstructures could inhibit the fatigue crack propagation more effectively than ferrite-pearlite microstructures.
基金supported by the National Natural Science Foundation of China(Grant Nos.51274167 and 51174168)the Northwestern Polytechnical University Foundation for the Fundamental Research(Grant No.JC20120222)
文摘Deformation behaviors of bicrystalline and nano-polycrystalline structures of various tilt angles and inclination angles in two dimensions are investigated in detail using a two-mode phase field crystal model.The interaction between grain boundary(GB)and dislocation is also examined in bicrystals and nano-polycrystals that both contain asymmetric and symmetric tilt GBs,with energy analysis being carried out to analyze these processes.During deformation simulations,we assume the volume of each simulation cell at every time step is coincident with that of the initial state just before deformation.Our simulation results show that the behaviors of symmetric and asymmetric GBs in bicrystals and nano-polycrystals differ from each other depending on tilt angle and inclination angle.A new dislocation emission mechanism of interest is observed in bicrystals which contain low angle symmetric tilt GBs.Low angle GB has a higher mobility relative to high angle GB in both bicrystalline and nano-polycrystalline structures,as does asymmetric GB to symmetric GB.The generation,motion,pileup and annihilation of dislocations,grain rotation and grain coalescence are observed,which is consistent with the simulation results obtained by molecular dynamics.These simulation results can provide strong guidelines for experimentation.